
D4.2: Dependency Models Iter. 1:
Definition of a formalism to express
dependencies and relations between

technological, business and organizational
components and processes.

WP 4 – Processes and Methods for Digitally Preserving
Business Processes

Delivery Date: 30/03/2012

Dissemination Level: Restricted

Nature: Report

TIMBUS is supported by the European Union
under the 7th Framework Programme for

research and technological development and
demonstration activities (FP7/2007-2013)

under grant agreement no. 269940

Copyright TIMBUS Consortium 2011 - 2013

Deliverable Lead

Name Organisation e-mail

John Thomson Caixa Mágica Software john.thomson@caixamagica.pt

Contributors

Name Organisation e-mail

Paulo Trezentos Caixa Mágica Software paulo.trezentos@caixamagica.pt

Mário Romão Caixa Mágica Software mario.romao@caixamagica.pt

Ricardo Teixeira Caixa Mágica Software ricardo.teixeira@caixamagica.pt

Andreia Palma Caixa Mágica Software andreia.palma@caixamagica.pt

Hedda Schmidtke KIT schmidtke@teco.edu

Martin Alexander Neumann KIT mneumann@teco.edu

Gonçalo Antunes INESC-ID goncalo.antunes@ist.utl.pt

Diogo Proença INESC-ID diogobcp@gmail.com

Artur Caetano INESC-ID artur.caetano@ist.utl.pt

Mike Nolan Intel michael.nolan@intel.com

Daniel Draws SQS daniel.draws@sqs.com

Gregor Heinrich iPharro g.heinrich@ipharro.com

Rudolf Mayer SBA mayer@ifs.tuwien.ac.at

David Redlich SAP david.redlich@sap.com

Internal Reviewer

Name Organisation e-mail

PCC: William Kilbride DPC william@dpconline.org

Peer: Stephan Strodl SBA sstrodl@sba-research.org

Disclaimer

The information in this document is provided "as is", and no guarantee or warranty is

given that the information is fit for any particular purpose. The above referenced

consortium members shall have no liability for damages of any kind including without

limitation direct, special, indirect, or consequential damages that may result from the

Copyright TIMBUS Consortium 2011 - 2013

mailto:sstrodl@sba-research.org
mailto:william@dpconline.org
mailto:david.redlich@sap.com
mailto:mayer@ifs.tuwien.ac.at
mailto:g.heinrich@ipharro.com
mailto:daniel.draws@sqs.com
mailto:michael.nolan@intel.com
mailto:artur.caetano@ist.utl.pt
mailto:diogobcp@gmail.com
mailto:goncalo.antunes@ist.utl.pt
mailto:mneumann@teco.edu
mailto:schmidtke@teco.edu
mailto:andreia.palma@caixamagica.pt
mailto:ricardo.teixeira@caixamagica.pt
mailto:mario.romao@caixamagica.pt
mailto:paulo.trezentos@caixamagica.pt
mailto:paulo.trezentos@caixamagica.pt
mailto:paulo.trezentos@caixamagica.pt
mailto:paulo.trezentos@caixamagica.pt
mailto:paulo.trezentos@caixamagica.pt
mailto:paulo.trezentos@caixamagica.pt
mailto:paulo.trezentos@caixamagica.pt
mailto:john.thomson@caixamagica.pt

use of these materials subject to any liability which is mandatory due to applicable

law.

Copyright 2012 by CMS, INESC-ID, KIT, SAP, SQS, Intel and iPharro.

This project has been funded with support from the European Commission.

This publication, Deliverable 4.2, reflects the views only of the authors, and the Commission cannot be

held responsible for any use which may be made of the information contained therein.

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY...11

2 INTRODUCTION...13

2.1 Dependencies...13

2.2 Problem Statement...16

2.3 Goals..16

2.4 Approach...18

2.5 Relationship with rest of TIMBUS project...19

2.6 Document Structure...20

3 RELATED WORK: STANDARDS AND METHODOLOGIES IN USE...22

3.1 Modelling Organisations, Assets, and Processes..22

3.1.1 The Open Group Architecture Framework..23

3.1.2 Zachman...24

3.2 Modelling Business Processes...26

3.2.1 ArchiMate...26

3.2.2 BPMN...28

3.3 Modelling Software Services Dependencies...29

3.3.1 High Level Software Service Dependencies ..30

 WSDL..30

 WS-BPEL..30

 UML..31

 SoaML...31

 BSDL ..32

3.3.2 Low Level Software Service Dependencies..33

 Microsoft Windows Dependencies..33

 Mac OSX Dependencies..33

 Linux dependencies and CUDF..34

3.4 Modelling and Capturing Hardware Dependencies ...36

3.4.1 Capturing based on Non-proprietary Standards...37

3.4.2 Capturing based on Hardware..38

3.4.3 Capturing based on Operating System..38

3.4.4 Capturing based on Scanning Tool..38

3.5 Extraction of Information..38

3.5.1 Data and Information...39

3.5.2 Data persistence variants and challenges...39

TIMBUS D4.2 Dissemination Level: Restricted Page iv

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

 Flat files..39

 Databases..40

 Cloud storage..40

 Big Data..41

3.5.3 Extraction of Business Process Information..41

3.5.4 Runtime Information extracted from IT systems..42

3.6 Information modelling...44

3.6.1 Enterprise Ontology...44

3.6.2 TOVE Project...47

3.6.3 Resource Description Framework...49

 Overview of the framework...50

 Approach taken...50

 Dependency relations taken into consideration..50

 Implementation examples..50

 Limitations..51

3.6.4 Web Ontology Language RDF/OWL...51

 Overview of the system..51

 Dependency relations taken into consideration..52

3.7 Digital Preservation...52

3.7.1 OAIS Information Model..52

3.7.2 PREMIS..54

3.7.3 CASPAR Preservation Networks...55

4 FORMAL LANGUAGE SPECIFICATION...57

4.1 Base ontology and construction...58

4.2 Naming conventions..61

4.3 Formal language for modelling of dependencies..62

4.4 Types of dependency relationships...63

4.5 TIMBUS constraint relationships..64

4.6 TIMBUS descriptive relationships..65

4.7 Formal semantics for constraint relations..72

4.8 Versioning and location of the Formalism..73

5 APPLICATION OF FORMALISM TO A USE-CASE...75

6 CONCLUSION AND OUTLOOK...83

6.1 Future work and D4.3 roadmap...84

 ANNEX...86

TIMBUS D4.2 Dissemination Level: Restricted Page v

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

 Annex A.1 - Fundamental Concepts..86

 Concept of Architecture..86

 Enterprise Architecture...86

 Business Process Modelling..87

 The Concept of Service...87

 Generic Services...87

 Services in Business/Enterprises...87

 Services in Software Engineering...88

 Dependencies..88

 Software Dependencies...90

 Hardware Dependencies...92

 Configuration Management..95

 Context..96

 Context Dependencies...97

 Domain Specific Languages..97

 Information Collection..99

 Annex A.2 - Dependencies in Service Operation and Lifecycle Processes...102

 Configuration Management in ITIL and ISO 9001...102

 Configuration Management in ISO 9001..102

 Software Configuration Management Plans (IEEE 828-2005)..103

 Software Lifecycle Management...103

 Annex A.3 – Dependency relations as mapped by IBM Rational Software Architect..104

 Dependency relations taken into consideration..105

 Implementation example...106

 Limitations..107

 Annex A.4 - Example Listing of CUDF for the TIMBUS Music Process in Taverna...108

 Annex A.5 – TIMBUS inverse relations mapping...110

 Annex A.6 – Listing of OWL-RDF properties of constraint relations...112

7 REFERENCES..114

TIMBUS D4.2 Dissemination Level: Restricted Page vi

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

List of Figures

Figure 1: NIST89/CIO99 layers of an enterprise architecture..15

Figure 2: Dependencies throughout the scope of an enterprise ..15

Figure 3: High-level view of TIMBUS approach..20

Figure 4: TOGAF Content Metamodel [TOGAF 2011]...24

Figure 5: Zachman Framework [Zachman, J., 1987]..25

Figure 6: ArchiMate Business Layer Metamodel [Archimate 2005]..27

Figure 7: ArchiMate Cross-layer Dependencies [Archimate 2005]..28

Figure 8: The research information model..39

Figure 9: OAIS Information Model [OAIS, 2002]..54

Figure 10: Preservation Network Example [Conway, E., et al., 2011]...56

Figure 11: Representation of classes, instances and relations in the ontology ...61

Figure 12: Demonstrative set of relations between context parameters in infrastructure layer..................................71

Figure 13: Demonstrative set of relations between context parameters in technology layer......................................72

Figure 14: Dependency extraction can be used for determining boundaries of systems and Enterprise Processes....77

Figure 15: TIMBUS Music Process workflow in Taverna ..78

Figure 16: TIMBUS Music Process workflow as captured by JUNG..81

Figure 17: TIMBUS Music Process workflow software dependencies..82

Figure 18: Expert roles using Domain Specific Languages..98

Figure 19: Basic topology UML model of IBM RSA...104

Figure 20: Example SAP system modelled as topology model..106

List of Tables

Table 1: The main relationships described in the Enterprise Ontology..45

Table 2: The main relationships described in TOVE..47

Table 3: TIMBUS constraint relations between entities...65

Table 4: TIMBUS descriptive relations between entities..66

Table 5: TIMBUS constraint relations between entities...73

Table 6: Relationships between entities..89

Table 7: TIMBUS inverse constraint relation mappings...110

Table 8: TIMBUS non-exhaustive inverse description relation mappings...110

TIMBUS D4.2 Dissemination Level: Restricted Page vii

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

List of Acronyms

WP{X} Work Package X of TIMBUS

D{X.Y} Deliverable X.Y of TIMBUS, where X is the Work Package

T{X.Y} Task X.Y of TIMBUS, where X is the Work Package and Y specific task

CMS Caixa Mágica Software

DPC DIGITAL PRESERVATION COALITION LIMITED BY GUARANTEE

INESC-ID INSTITUTO DE ENGENHARIA DE SISTEMAS E COMPUTADORES,

INVESTIGACAO E DESENVOLVIMENTO EM LISBOA

KIT Karlsruher Institut fuer Technologie

SAP SAP AG

SBA VEREIN ZUR FORDERUNG DER IT-SICHERHEIT IN OSTERREICH

SQS SQS SOFTWARE QUALITY SYSTEMS AG

ACL Agent Communication Language

ADF Activity-Decision Flow

AIDC Automatic Identification and Data Capture

API Application Programming Interface

BAT Big Air Transport

BPD Business Process Diagram

BPEL4WS Business Process Exececution Language for Web Services

BPMI Business Process Modelling Initiative

BPM Business Process Management

BPMN Business Process Model Notation

BPMS Business Process Management Systems

BSDL Business Service Description Language

CASPAR Cultural, Artistic and Scientific knowledge for Preservation, Access and

Retrieval (http://www.casparpreserves.eu/)

CD Compact Disc

CM Configuration Management

CMDB Configuration Management Database

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

CMU Carnegie Mellon University

COBIT Stood for, Control Objectives for Information and related Technology

CUDF Common Upgrade Descripition Format (www.mancoosi.org/cudf)

DL Description Logic

DLL (Windows) Dynamically Linked Library

TIMBUS D4.2 Dissemination Level: Restricted Page viii

Copyright TIMBUS Consortium 2011 - 2013

http://www.mancoosi.org/cudf
http://www.casparpreserves.eu/

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

DPE DigitalPreservationEurope (http://www.digitalpreservationeurope.eu/)

DSL Domain Specific Language

DVD Digital Versatile Disc

EI Enterprise Integration

ETL Extraction, Transform and Load

FIPA Foundation for Intelligent Physical Agents

GPL Context of programming/modelling or languages - General Purpose

Languages

HCL Hardware Compatibility List

HTTP Hyper-text transfer protocol

HTTPS Hyper-text transfer protocol Secure

HW Hardware

iAMT Intel Active Management Technology

ICMP Internet Control Message Protocol

IDEF Integration Definition

IEC International Engineering Consortium

IEEE Institute of Electrical and Electronics Engineers

IERM Intelligent Enterprise Risk Management (specified in D4.1 – TIMBUS)

IoS Internet of Services

IP Internet Protocol

ISO International Organisation for Standardisation

IT Information Technology

ITIL Information Technology Infrastructure Library

JADE Java Agent Development Framework

KQML Knowledge Query and Manipulation language

NIST National Institute of Standards and Technology

NT (Windows) New Technology

OA Organisational Agents

OAIS Open Archival Information System

OASIS Organisation for the Advancement of Structured Information Standards

OGC Government Commerce

OMG Object Management Group

OS Operating System

OWL Web Ontology Language

PaaS Platform as a Service

PREMIS PREservation Metadata: Implementation Strategies working group

PXE Pre eXecution Environment

RDF Resource Description Framework

REST Representational state transfer

TIMBUS D4.2 Dissemination Level: Restricted Page ix

Copyright TIMBUS Consortium 2011 - 2013

http://www.digitalpreservationeurope.eu/

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

RMM (Intel) Remote Management Module

RPM RPM Package Manager

RUP Rational Unified Process

SaaS Software as a Service

SAT Satisfiability Problem

SCM Software Configuration Management

SEI Software Engineering Institute

SLA Service Level Agreement

SNMP Simple Network Management Protocol

SoaML Service oriented architecture Modelling Language

SOAP Used to stand for Simple Object Access Protocol

SSQC Software Systems Quality Consulting

SW Software

SWEBOK Software Engineering Body of Knowledge

TOGAF The Open Group Architecture Framework

TOVE Toronto Virtual Enterprise project

UML Unified Modelling Language

URL Uniform Resource Locator

VM Virtual Machine

VSRI Virtualisation, Storage, Rerun and Integration

WMI Windows Management Instrumentation

WS-BPEL Web Services Business Process Execution Language

WSDL Web Service Description Language

WSH Windows Script Host

XML Extensible Markup Language

XPDL XML Process Definition Language

XSD XML Schema Definition

TIMBUS D4.2 Dissemination Level: Restricted Page x

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

1 Executive Summary

Digital preservation is traditionally understood as the management of digital

information for as long as necessary [Beagrie N., et al., 2001]. It is the set of processes

and activities that ensure continued access to assets existing in digital formats.

The TIMBUS Project looks to enlarge the understanding of digital preservation to

include the set of activities, processes and tools that ensure continued access to

services and software necessary to produce the context within which information can

be accessed, properly rendered, validated and transformed into knowledge. One of the

fundamental requirements is to preserve the functional and non-functional

specifications of services and software, along with their dependencies. Service

dependency analysis is fundamental in determining what should be preserved. For

that purpose, TIMBUS will use a combination of both manual and intelligent systems

that can be used to integrate the results from enterprise risk management, service

dependency analysis and value engineering.

Work Package 4 of TIMBUS looks to investigate what is required for digital

preservation to be performed in an Enterprise System. As such, the analysis of the

related work and research will be carried out within Work Package 4 and then in Work

Package 5, a specific architecture proposed that will be implemented through tools in

Work Package 6. The tools that are implemented as a result of Task 4.2 and linked to

this deliverable are D6.2, Dependencies Monitor & Reasoning System and D6.5,

Populating and Accessing Context Model.

The aim of Task 4.2 is to develop a means for describing the dependencies between

different components of an Enterprise Process through the different layers of an

Enterprise. To identify the types of dependencies required it is essential to categorise

the types of layers in an Enterprise and determine the components that are needed

for preserving a business process.

Given the large diversity of Enterprises, the overall approach to dependency capturing

has to be generic enough for encompassing such diversity. In this deliverable a first

version of Formalism for dependency modelling is proposed. It is design to be

extensible in order to accommodate such diversity, with this first iteration focusing

mainly on the technical aspects surrounding a business process. It is based on the

analysis of relevant related work so that it is in line with established Domain Specific

Languages (DSLs). Two types of dependency relationships were derived: constraint

relations, which are strict relations that must be met in order in order to effectively

preserve a process; and description relations, which associate entities with attribute

details. This deliverable also depicts the application of the developed formalism to a

use case dealing with a Music Classification Process. The purpose is to show that the

TIMBUS D4.2 Dissemination Level: Restricted Page 11

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

main result of this work has enough expressiveness to capture the properties of the

technical infrastructure supporting that process.

The formalism was developed jointly with Task 4.4 under the scope of D4.5, which

focus on context modelling. The result was a unified model which is able to capture

dependencies on the context surrounding a business process. While the present

deliverable focuses on the dependency relationships, D4.5 focuses on the description

of relevant context parameters.

TIMBUS D4.2 Dissemination Level: Restricted Page 12

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

2 Introduction

In order to be rendered, digital objects depend on a technological context defined by

specific combination of software and hardware that is able to decode the bit

organisation. In the traditional approaches to digital preservation, the focus is on the

preservation of the digital object itself along with extra information required to be able

to render the object in the future, usually known as technical metadata, which can

contain information about the technical environment involved in the production or

usage of an object.

However, that alone is not sufficient to be able to make sense of the informational

content carried by the object, since it requires a social or organisational context where

it was created or used. This fact has been highlighted in the digital preservation

Europe research roadmap [DPE 2007], which defines the context of a digital object as

the “representation of known properties associated with and the operations that have

been carried out on it”. Those properties might include information about technology,

legal requirements, existing knowledge, and user requirements. Thus, the reuse of a

digital object might depend of any of those factors.

The challenges associated with this issue are even more complex if we consider

complex digital objects such as business process or workflow specifications that are

dependent on highly distributed service environments supported by heterogeneous

technologies that are running in highly diverse organisational settings. The effective

preservation and authoritative re-enactment of such objects might involve the

capturing of other digital objects that are also dependent on other objects, forming a

complex network of dependencies.

In order to tackle this challenge, the TIMBUS project has the overall goal of enabling

the successful digital preservation of business processes, which is an innovative

concept in the digital preservation community. For that the entire relevant context has

to be captured using automatic or semi-automatic means, so that the process can be

exhumed and re-enacted. This will necessarily involve the modelling of all the possible

dependencies existing between digital objects, so that all the required data can be

tracked and preserved.

2.1 Dependencies

Dependencies as described in this deliverable in general are a descriptive term for

relationships between two entities. This largely follows the definition of dependencies

and coupling that is used in computer science [Stevens, W.P, et al., 1974]. In abstract

terms, if entities are represented as nodes in a graph, then dependencies are the

edges between these nodes. The type of relationship as denoted by the edge is

TIMBUS D4.2 Dissemination Level: Restricted Page 13

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

determined by what the graph is representing though. There may be many similar

types of relationships that can be linked in this way.

In general:

Entity_1 Relationship Entity_2

Where Entity1 and Entity2 are two different entities or different specific

instantiations of entities and Relationship denotes the type of relationship the

entities have on each other. These relationships might be directed, so the order used

for specifying a dependency is important.

The definition of a dependency is actually more specific than the general entity

relationships and it denotes a requirement that one entity must be present at the

same time as the other. An entity that is dependent on another is known as the

dependent and the entity to which it refers can be called the dependee.

The concept of dependency can be applied both to tangible or intangible things. For

instance, the enactment of a business process might be dependent on a determined

business actor, or of the time zone of the place where the process is being run.

Additionally, this concept can also be applied to things existing in different abstraction

layers. For instance, an activity performed by an actor on the context of a business

process (conceptual/business layer abstraction) might be dependent on a particular

software system (system/logical layer abstraction).

A diagram showing how dependencies may cross through different conceptual layers

of an enterprise is shown in Figure 1. Each layer can be thought of as providing a

different perspective on an enterprise. The layers each provide a conceptual grouping

of different elements and help to divide the perspectives of an enterprise into more

manageable units. Relations naturally exist between elements in the same conceptual

layer. For instance in the diagram in Figure 2, L1 could signify the top-level business

process that could be represented using BPMN. Lower level layers such as L2 through

to L4 could represent; service, software and infrastructure layers. The number of

layers is not limited to four as shown in Figure 2 but depends on how many conceptual

layers are decided upon. This again is a design decision. Many enterprises will

separate the concerns of an enterprise into four or five layers based on the U.S.

National Institute of Standards and Technology (NIST) representation. The NIST

representation was adopted by the U.S. Federal Government in the Chief Information

Officers Council's Federated Enterprise Architecture (CIO99) and is represented in

Figure 1. As discussed in the approach in Section 3.1.2 an alternative framework for

dividing the concerns, the Zachman framework is used.

TIMBUS D4.2 Dissemination Level: Restricted Page 14

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Figure 1: NIST891/CIO992 layers of an enterprise architecture

Elements in the BPMN layer could then have a representation in the Formalism. These

BPMN elements would then be connected through terms that are more appropriate for

that particular domain. BPMN 2.0 for instance has several types of connections;

sequence flow, default flow, conditional flow, message flow, conversation list, forked

conversation links and associations.3

Figure 2: Dependencies throughout the scope of an enterprise

1http://www.itl.nist.gov/lab/specpubs/NIST%20SP%20500-167.pdf (Figure 7-1)
2http://www.cio.gov/documents/fedarch1.pdf
3http://www.omg.org/bpmn/Samples/Elements/Connections.htm

TIMBUS D4.2 Dissemination Level: Restricted Page 15

Copyright TIMBUS Consortium 2011 - 2013

http://www.omg.org/bpmn/Samples/Elements/Connections.htm
http://www.cio.gov/documents/fedarch1.pdf
http://www.itl.nist.gov/lab/specpubs/NIST%20SP%20500-167.pdf

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

2.2 Problem Statement

Digital preservation aims towards the optimisation of the information life cycle

management, from the creation to the dissemination and usage of digital objects, with

the objective of maintaining the knowledge contained in the objects accessible for

future users, beyond the limits of media failure or technological obsolescence.

The complexity of digital preservation increases with the fact that different

organisational scenarios contain different types of objects, each with its own

preservation requirements. This can be easily verified, for instance, when comparing

the preservation of digital objects with static content, such as text files, with dynamic

objects, such as executable process workflows that are used by workflow engines.

Moreover, in these complex cases, the semantics and behaviour of objects can be

largely dependent on the context where those objects are created and used, thus

requiring a particular environment in order to be understandable or rendered. Indeed,

the preservation of such objects also requires the preservation of multiple inter-

dependent objects, without which it might be impossible to interpret.

For digital preservation to succeed, the various dependent objects that are required

need to be identified. If this could seem a trivial task for objects that are explicitly

dependent on each other, it becomes a challenge for objects whose dependencies are

not easily observed (for instance, those representing conceptual entities belonging to

different abstraction layers, as exemplified above). If not modelled explicitly, it

becomes very easy to lose track of objects that are indirectly or not explicitly

dependent on each other.

Additionally, in such scenarios involving complex dynamic objects that are sometimes

subjected to changes also prompted by changes in environmental conditions (for

instance, executable business process specifications), the monitoring of the impact of

changes on the network of dependencies might be important to ensure the

authoritative re-enactment of objects.

2.3 Goals

The overall goal of this deliverable is to provide a formalism that is sufficient to

express the dependencies required for assuring the digital preservation of processes.

For this purpose, existing, well established, or even standard Domain Specific

Languages will be taken into account, so that the formalism is itself aligned with the

best practices in dependency modelling existing in different domains (which will be

surveyed in Section 3).

This formalism has been designed to model the parameters in an Enterprise relevant

to answering the question “What elements need to be captured in order to digitally

preserve a business process”. For that purpose, the formalism relates components on

TIMBUS D4.2 Dissemination Level: Restricted Page 16

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

different levels of the Enterprise (that usually are defined through their own DSLs, for

instance BPMN for business process representations). These relations (dependencies)

will then be formally captured and allow for reasoning to be performed. This will allow

for the assessment of the extent to which an enterprise system and its processes can

be preserved.

Reasoning is a form of solving problems using information that is either explicitly

encoded into the problem or that can be inferred through a set of logical rules that

apply to all elements in the system being reasoned upon. The usage of reasoning on

the Formalism as defined will then allow, in concrete cases, for dependencies to be

analysed between components that don't naturally have explicit relations or relations

between components that belong to different abstraction layers. In this way

information applicable to different abstraction layers (i.e., Business, System, and

Technology) can be encoded in a way that is in line with domain specific languages

but that also captures inter-layer dependencies. This will allow for the assessment of

the impact of changes on a component at a determined abstraction level and how the

changes will affect other components at different abstraction levels, triggering a

digital preservation action as required.

For example, through reasoning the impact of changes to legal policies on the

information systems of a specific type of organisation could be detected through the

dependency network and based on the suggestions of the reasoner, the preservation

of the systems and processes could be triggered. This helps contribute to preservation

planning and risk assessment of the overall and constituent components of the

business process. Besides being used for triggering preservation, reasoning could also

be used for assessing if a process can be preserved, for instance when there is a

component that cannot be preserved that is part of the dependency graph of a

component that forms part of a business process then this model of the process would

be marked as non-preservable. Non-preservability may be marked by either an expert

or by the tools in cases such as;

 Cost of preservation of a component is prohibitive (in terms of man-power, cost

and money). All restrictions of preservability derive from costs in some form.

 A business process expert might decide when examining the scenario that parts

of the scenario are not essential to the overall business process. In TIMBUS this

is combined with risk information that suggests the potential cost versus benefit

of preserving specific parts of a business process and is performed in the IERM

section.

 The technical feasibility of performing preservation may be restrictive in that

capturing the original components of the business process may take a lot of

human and computing effort.

TIMBUS D4.2 Dissemination Level: Restricted Page 17

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

 Legal issues may restrict preservation of parts of a business process due to

incomplete licenses, contracts and agreements, amongst other issues.

 Business enterprise boundaries can also affect the preservability in that an

enterprise may use resources and services from other enterprises that are

outside of the control of the enteprise environment being preserved. Without

preserving the connected services environment also, there is a limitation to the

guarantee that the complete process is preserved. These may be alleviated by

Escrow agreements that are being investigated in the scope of TIMBUS.

In this case, an alternative solution could be proposed if one is available and if all the

solutions are assessed then process will be marked as non-preservable4.

2.4 Approach

Dependency and component analysis and capturing can be done at various different

levels. From the software and computing perspective this analysis can be done from

low level instruction calls all the way through to top level networks of connected

computers. From a business perspective, this analysis could be done from the level of

a business actor performing a low-level activity up to the level or cross-organisation

business processes.

The approach taken for this deliverable was to focus on the identification of software

dependencies that are required for preserving the business process. Business and

organisational dependencies will be approached in D4.3: Dependency Models Iter. 2,

due in month 24 of the project. Despite that, this deliverable presents an extensive

section (Section 3) on related work which also contains relevant references for

business/organisational dependencies.

As already referred, various perspectives on the relevant context entities and

relationships can be adopted, which each might have different components that must

be preserved. To better manage the different concerns of an enterprise, some initial

ideas for splitting the components were suggested and worked on. While working on

the categorisation of components it was determined that this was not a trivial

problem. To better categorise the concerns a well-established divide-and-conquer

framework, the Zachman framework, was chosen for categorising the contextual

parameters and entities. This framework is normally seen as the 'Enterprise Ontology'

but has no exact categorisation definitions but rather provides a series of

recommendations. It will be described in more detail later in Section 3.1.2.

After the identification of the relevant context entities, it was necessary to define, in a

precise way, what is meant by a component or entity and also what is meant by a

4a property that can be assigned manually or automatically based on technical feasibility, risk

and cost

TIMBUS D4.2 Dissemination Level: Restricted Page 18

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

dependency. A state of the art review of existing formalisms for the representation of

entities and relationships was performed with the objective of merging the expert

knowledge analysis performed by various systems into a single common formalism.

This formalism defines how the entities relate to each other, both in terms of a

specification of the entity within the formalism and also in terms of the relations that

they have between themselves and other entities. Additionally, it can also be

extended to support other perspectives of an enterprise architecture.

Following the definition of the dependencies, it was necessary to apply the developed

formalism to a use case dealing with a Music Classification Process with the purpose of

showing it has enough expressiveness to capture the properties of the technical

infrastructure supporting such a process.

Reasoning is a complex issue and will be one of the main focal points in the

subsequent Deliverable, D4.3. One of the main motivations for having a Formalism is

that by having a reasoner connected to the formally captured concepts, automated

reasoning tools are able to detect errors and infer information that may otherwise take

considerable human intervention or may not be immediately intuitive. As this is a

large subject that needs careful consideration it will be fully considered in D4.3.

2.5 Relationship with rest of TIMBUS project

The TIMBUS project gathers context information about the business processes that

reside in a source execution environment in four primary ways. Figure 3 below

illustrates these at a high level showing how service dependency analysis is related to

the overall project. TIMBUS contexts can be logically grouped into tasks relating to

iERM, service dependency analysis (both software and hardware), business process

contexts and regulatory lifecycle management. These provide all the information

necessary to fully describe a business process, its constituent components, how they

fit together, why they need to be preserved and for how long and finally should also

capture the knowledge required by a future community to step through the execution

of an exhumed version of the original process.

TIMBUS D4.2 Dissemination Level: Restricted Page 19

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Figure 3: High-level view of TIMBUS approach

Service dependency analysis is an important part of this chain and contains the

information needed to first identify all interdependent service components so that

they can be captured for preservation and secondly this data is also needed to

reconstruct the exhumed environment in the future. In general, TIMBUS Workpackage

WP4 is concerned with designing and defining methodologies, ontology’s and

formalisms for the four context types shown in Figure 3. Workpackage WP4 takes its

lead from the TIMBUS architecture which is designed in Workpackage WP5 along with

the requirements of the execution tools in Workpackage WP6 and the use cases in

Workpackages WP7, WP8 and WP9. More specifically, the output of this deliverable

(D4.2) and D4.3 form the basis of the autonomous service dependency reasoning

system for D6.2. This deliverable is also supported by T4.4 that contributes context

modelling and reasoning aspects. These results help to contribute towards the overall

exploitation plan that is described in Workpackage WP2 where the potential benefits

to the industry and enterprises are being investigated. The investigations being

carried out in WP2 are supported by those of the dissemination activities in

Workpackage WP3 that attempt to highlight the results of the TIMBUS project to the

research, scientific and industrial communities as well as to those who may not

already be involved in digital preservation communities but could benefit from the

results.

2.6 Document Structure

This deliverable is structured in 7 sections. Sections 1 and 2 refer to the Executive

Summary and the Introduction respectively. Section 3 describes an extensive set of

Related Work that approaches several areas of interest to the work presented in this

deliverable:

i) Relevant references for the modelling of dependencies at the business,

information, software, and hardware levels, which assumes particular

TIMBUS D4.2 Dissemination Level: Restricted Page 20

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

importance in the identification of the parameters and dependencies that are

important to capture in this Formalism;

ii) Relevant references for configuration management standards and practices,

which also deal with the identification and capturing of dependencies;

iii) Information capturing and data mining, which might be important sources for

dependency identification and capturing;

iv) Relevant topology models that could be used as a basis for the Formalism.

Section 4 describes the resulting Formalism, more specifically the aspects involved in

its construction, the language used as a basis for the model, the formal semantics for

the reasoning, and how the versioning of the Formalism will be performed. Section 5

will then demonstrate the application of the formalism to a purpose-built use case that

is described in detail in that section that is used for evaluation and iterative

refinement of the Formalism. Section 6 contains a summary of the Deliverable stating

what was achieved, the lessons learnt and the roadmap for the subsequent

Deliverable D4.3 that will be used to continue the work carried out here.

The terms that will be used in this Deliverable are described in the Fundamental

Concepts in Annex (Annex A.1 - Fundamental Concepts). In Annex (Annex A.2 -

Dependencies in Service Operation and Lifecycle Processes), specific ISO standards

relevant to Information and data life-cycle management are included that can be used

for managing the evolution of data. Annex (Annex A.3 – Dependency relations as

mapped by IBM Rational Software Architect) provides an example of a certain Industry

tool that is (IBM RSA) referred to in the related work, Section 3, and has a different

way of handling dependencies and is given as an example of a more limited

alternative that is currently being used. Annex (Annex A.4 - Example Listing of CUDF

for the TIMBUS Music Process in Taverna) gives a sample listing of the purpose-built

use case described in Section 3.3.2 when captured using a set of tools using previous

work of CUDF, described in Section 3.3.2. Annex (Annex A.5 – TIMBUS inverse relations

mapping) is a listing of a set of the inverse relationships for those that are described in

Section 4 and specifically Sections 4.5 and 4.6. Annex A.6 includes a listing of sample

snippets of the representation of the Formalism, as described in Section 4, in OWL-

RDF/XML format.

Section 7 then includes the references for materials cited in and concludes the

Deliverable. If the citation is a URL it will not be included as a specific bibliographic

reference but rather as a footnote in the corresponding section to allow the reader to

investigate the particular subject in more detail.

Reading of the references and Appendicies is not mandatory but it may be useful to

clarify certain concepts as required.

TIMBUS D4.2 Dissemination Level: Restricted Page 21

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

3 Related Work: Standards and Methodologies in Use

Modelling dependencies for TIMBUS can benefit from a range of established notational

standards and methods applied for different purposes. When standards and methods

prove useful in IT, supporting tools for the IT industry are developed. In this section, an

overview of established and widely used standards and methods for defining and

supporting business processes will be provided. The overview starts from an abstract

view on organisations described by architectures in Section 3.1. Next, different

standard approaches for the modelling business processes are described in Section

3.2. As business processes are usually supported by software services, the models for

describing software dependencies are described in Section 3.3 beginning with the high

level notations of business and software services to the detailed view including the

description of low-level software dependencies applied on various operating systems.

Afterwards, in Section 3.4 the modelling and capturing of hardware dependencies

conclude at the lowest level of abstraction and complete the top-to-bottom

dependency hierarchy. Typical software lifecycle processes and methods for

extracting business related information are described in the Annex (Annex A.2 -

Dependencies in Service Operation and Lifecycle Processes). These can be used to

populate the models with concrete information and will be the starting point for linking

the digital archive with the business to preserve. In Section 3.5, methods for

extracting information depending on the level of abstraction are reviewed and in

Section 3.6 the concept of ontologies is backed up by current related work. Finally, in

Section 3.7, currently established preservation standards are linked with service

dependency modelling concluding the overview of the current related work.

The overview provided in this section feeds into development and description of the

complete formalism described in Section 4.

3.1 Modelling Organisations, Assets, and Processes

Modelling dependencies is an established tasks in IT and TIMBUS can make use of the

models applied in software development. The modelling of dependencies at the

business process and organisation level is a typical feature in enterprise architecture

meta-models, although not referred to explicitly as dependency modelling. Enterprise

architecture frameworks provide their respective meta-model with the aim of

enforcing traceability between the strategic requirements of the organisation and the

technological infrastructure supporting the business thereby promoting business/IT

alignment. Two of the leading examples of such meta-models are the ones provided

by The Open Group Architecture Framework (TOGAF), described in Section 3.1.1, and

Zachman architecture framework, described in Section 3.1.2. These serve the

TIMBUS D4.2 Dissemination Level: Restricted Page 22

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

organisational embedding of processes and have their role in mapping artefacts or

components to processes and organisations. Models defined and populated for the

purpose of development can be exploited and re-used in TIMBUS to identify

dependencies and explore the contexts of software services.

On the intra-process level, dependencies are usually depicted in business process

modelling notations, such as the Business Process Modelling Notation (BPMN, see

Section 3.2).

3.1.1 The Open Group Architecture Framework

Besides providing a method for the development of an enterprise architecture, TOGAF

[TOGAF 2011] provides an architecture content meta-model. The meta-model defines

the kinds of entities existing in an enterprise, at multiple levels, and the horizontal and

vertical relationships existing between those entities, which could point to possible

dependency relationships. The meta-model entities can then be instantiated in the

development of concrete models of the organisation. The diagram in Figure 4 depicts

the TOGAF meta-model, which enables modelling of intra-layer dependencies between

the concept of process and other concepts belonging to the same conceptual layer.

Cross-layer dependencies between the concept of process and other concepts are also

possible to be observed, namely through the concept of business service, which

interfaces with “lower” layers. With the “upper”, strategic layer of Architecture

Principles, Vision, Requirements, and Roadmap it is argued that the concepts

belonging to that layer are related with all the other concepts of the layers below, with

no explicit dependencies being enforced.

TIMBUS D4.2 Dissemination Level: Restricted Page 23

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Figure 4: TOGAF Content Metamodel [TOGAF 2011]

3.1.2 Zachman

The Zachman framework [Zachman, J., 1987] was one of the first enterprise

architecture frameworks created. It tries to take an holistic approach to the description

of an organisation and the IT systems supporting the organisation’s business purpose.

The top-level entities addressed when using the Zachman framework are listed in

Figure 5. The structure provided is used for defining the role of information systems in

the enterprise, with the purpose of providing different views of the organisation with

regards to different stakeholders5.

5http://www.zachmaninternational.us/index.php/ea-articles/100-the-zachman-framework-

evolution

TIMBUS D4.2 Dissemination Level: Restricted Page 24

Copyright TIMBUS Consortium 2011 - 2013

http://www.zachmaninternational.us/index.php/ea-articles/100-the-zachman-framework-evolution
http://www.zachmaninternational.us/index.php/ea-articles/100-the-zachman-framework-evolution

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Following the Zachman framework, a number of models, principles, services, and

standards needed to address the concerns of one or more stakeholders have to be

described. The “Scope” defines the business context, including the business purpose

and strategy; the “Business Model” describes the organisation. Relevant dependency

information are implied in the “System Model” describing how the systems will satisfy

the organisation's information needs at high level and independent from concrete

implementation. Similarly, the “Technology Model” describes the implementation of

the systems and is expected to contain valuable dependency information at a system

level whereas “Components” provide details each of the system's components and

carry intra-system dependencies. Finally, “Instances” give a view of the functioning

system in its operational environment and thereby disclose dependencies to partner

systems, networks and hardware.

Figure 5: Zachman Framework [Zachman, J., 1987]

However, the Zachman Framework is a generic framework and makes suggestions on

the types of models and contents that can be used for the various aspects. As there

are no formal prescriptions, the analysis of dependencies strongly depends on the

concrete implementation of the framework in the respective organisation. For concrete

realisation of the framework, further methods and tools must be applied – a selection

of which are described in the following sections.

TIMBUS D4.2 Dissemination Level: Restricted Page 25

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

3.2 Modelling Business Processes

Business processes exist in all types of enterprises and are described and documented

in manifold ways. In order to reasonably describe and capture software services and

their dependencies, organisations will make use of standards or best practises such as

ArchiMate. They may also choose to describe the flow of the business process using

defacto standards such as Business Process Modelling Notation (BPMN). Most

enterprises find the procedures and methodology described in ArchiMate overly

complex and will resort to a description using BPMN that only weakly describes

relations in terms of which activities precede others and state who will perform those

activities. When business processes are documented, higher level dependencies are

documented and made explicit in different formats. In TIMBUS, explicitly documented

business processes are a precondition for a complete and exhaustive dependency

analysis – if the processes are only implicit, it will be difficult to assess the

completeness of supporting software services and IT systems. In the following, two

business process models are described that can serve as input for the software

dependency analysis in TIMBUS.

3.2.1 ArchiMate

ArchiMate’s [Archimate 2005] offering is distinct from that of TOGAF: while it does not

provide a method for architecture development, it comprises a modelling language for

enterprise architecture with an associated meta-model. The meta-model defines the

entities that can be described within the blueprints and design of the architecture,

which can exist at the level of business, application and technology, and in one of

three perspectives: structure, behaviour and information. In ArchiMate, a business

process is seen as a specialisation of the business behaviour element concept (which

contains other specialisations such as business function, business interaction, and

business event). From the observation of the excerpt of the meta-model for the

business layer entities depicted in Figure 6, it is possible to observe the intra-layer

dependencies.

TIMBUS D4.2 Dissemination Level: Restricted Page 26

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Figure 6: ArchiMate Business Layer Metamodel [Archimate 2005]

Cross-layer dependencies are also detailed in ArchiMate. In this case, the

dependencies are between the business layer concepts and the layers below, since

there are not any layers above the business layer. The cross-layer dependencies as

captured in Archimate are depicted in Figure 7.

TIMBUS D4.2 Dissemination Level: Restricted Page 27

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Figure 7: ArchiMate Cross-layer Dependencies [Archimate 2005]

3.2.2 BPMN

While ArchiMate models inter- and intra-layer dependencies, business processes also

have intra-process dependencies. For instance, activities might depend on other

activities, on certain events, or even on determined data. Business process modelling

languages capture those internal dependencies that might matter to preserve.

The Business Process Model and Notation (BPMN) is a specification created by the

Business Process Modelling Initiative (BPMI), first released to the public as version 1.0

in May 2004. The specification has since then been adopted by the Object

Management Group, and it is currently on its 2.0 version [OMG-BPMN, 2011].

The motivation for using BPMN is to provide a notation from which all business users

and developers can understand. BPMN creates a standardised bridge for the gap

between business process design and process implementation. BPMN defines a

Business Process Diagram (BPD) for creating graphical models of business process

operations. BPD have three Flow Objects; Events, Activities and Gateways. Flow

objects are connected together in a diagram to create a basic skeletal structure of a

business process; Sequence Flow, Message Flow and Association.

When a higher level of precision is required for Business Process Management

Systems (BPMS), additional elements can be added to the core elements and shown

using graphical symbols. BPD also supports the concept of “pools” and “swim lanes”

TIMBUS D4.2 Dissemination Level: Restricted Page 28

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

to help separate functional activities into groups that are related. BPMN is designed to

be flexible in allowing extensions to the notation but BPD currently only pre-defines

three extension artefacts. There are two basic types of models that can be generated

by a BPD: collaborative (Business-2-Business) and internal (Private) business

processes.

As BPMN also helps to manage the difficulty of translating from the Business-oriented

process modelling notation to IT-orientated execution languages, process descriptions

in BPMN provide valuable input for process and service dependency analysis.

Graphical objects of BPMN and a large set of attributes have been mapped to

BPEL4WS, a process execution language.

3.3 Modelling Software Services Dependencies

Business processes are typically underpinned with IT services; IT services are

composed from software systems. To this end, it is necessary to assess the

dependencies between software components as to fully supplement the dependencies

on business process and IT service level.

The purpose for using software dependencies in TIMBUS will be for us to be able to

determine what software is required for preservation of a process. By computing the

transitive closure of dependencies we can describe the minimal set of packages that

are required for a software application. One caveat is that software dependencies tend

to be related to local machines and the software installed on a single system. For

setting up more complicated interactions where computers interact with each other

over a network, the interfacing between systems is usually managed by configuration

scripts or manager applications that handle the relations between systems. Generally

though software dependencies on Linux systems are limited in scope to package

management systems and as such when it comes to services and interactions with

networks these are handled by external service dependencies such as web-services.

Software can be viewed at many abstraction levels from low level binary to much

more complex higher level systems such as Operating Systems. Software dependency

relationships on standard Windows machines and Mac OS machines tends to work at a

high level, with software components requiring the use of an Operating System

framework such as .NET6 for Windows. There are other software artefacts that try to

re-use commonly implemented systems such as Dynamically Linked Libraries (DLLs7).

6http://www.microsoft.com/net
7http://msdn.microsoft.com/en-us/library/windows/desktop/ms681914%28v=vs.85%29.aspx

TIMBUS D4.2 Dissemination Level: Restricted Page 29

Copyright TIMBUS Consortium 2011 - 2013

http://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
http://www.microsoft.com/net

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

3.3.1 High Level Software Service Dependencies

This section discusses software dependencies existing between remote machines,

describing relevant service description languages. Service Description Formats are

used to describe relations between software components on systems that are

separated by the Internet or other medium. For TIMBUS purposes, these widely used

languages again provide a starting point for dependency analysis and therefore are

described briefly in the following.

WSDL

Web Service Description Language (WSDL) is an XML based language that is a W3C

recommendation for describing the functionality provided by a web-service. The latest

version at the time of writing is 2.0 [WSDL, 2007] that came into force June 26, 2007.

WSDL is used for describing the functionality that a web-service may offer and as such

is used with SOAP and XML schema to provide web-services over the internet.

Accordingly, WSDL reveals dependencies to be considered during preservation.

WS-BPEL

BPEL4WS was a popular approach to Business Process Management using Web

Services, submitted in 2003 to the Organisation for the Advancement of Structured

Information Standards (OASIS) by BEA Systems, IBM, Microsoft, SAP and Siebel for

standardisation. It is currently named WS-BPEL and it is currently on its version 2.0

[OASIS, 2007]. It is usually referred to using the moniker BPEL.

WS-BPEL can be used both to abstractly model a process and to create an executable

business process. Executable WS-BPEL is essentially an XML programming language. A

“program” in WS-BPEL is called a process. A process consists of a set of nested

activities, which mostly fall into two sets; structured (allow sequential and conditional

execution) and basic activities (invocation of external service to expose an interface to

the process itself).

WS-BPEL defines a model and a grammar for describing the behaviour of a business

process based on interactions between the process and its partners, which occur

through Web Service interfaces, and the structure of the relationship at the interface

level is encapsulated in what is called a 'partnerLink'. The standard defines how

multiple service interactions with these partners are coordinated to achieve a business

goal, as well as the state and the logic necessary for this coordination [OASIS, 2007].

WS-BPEL relies strongly on WSDL. The WS-BPEL process model is layered on top of the

service model defined by WSDL 1.1. At the core of the WS-BPEL process model is the

notion of peer-to-peer interaction between services described in WSDL, with both the

process and its partners being exposed as WSDL services. A business process defines

the coordination of the interactions between a process instance and its partners. In

TIMBUS D4.2 Dissemination Level: Restricted Page 30

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

this sense, a WS-BPEL process definition provides and/or uses one or more WSDL

services, and provides the description of the behaviour and interactions of a process

instance relative to its partners and resources through Web Service interfaces [OASIS,

2007]. In other words, WS-BPEL is used to describe the message exchanges followed

by the business process of a specific role in the interaction.

WS-BPEL as discussed above reveals dependency information between partners and

resources through web interfaces. These dependencies are also relevant for TIMBUS

purposes.

UML

Unified Modelling Language (UML) is a standardised, general-purpose modelling

language. It was created and is managed by the Object Management Group (OMG). It

is now a de facto industry-standard that is used for modelling software systems. UML

modelling uses conceptual components such as actors, activities, processes, etc. Also,

it is extensible through the concepts of stereotype and UML profiles.

UML is currently at version 2.4.1 and is comprised of 14 types of diagrams, divided

into two major categories: structure diagrams, with 7 different types, and behaviour

diagrams, accounting for 7 types of diagrams of which 4 diagrams belong to the

subgroup entitled interaction diagrams [UML, 2007]. Structure diagrams allow the

modelling of the description of the entities, relationships and concepts of a system.

Behaviour diagrams allow the modelling of the actions that the system can perform

and the valid changes in the domain.

All this variety of diagrams allows the modelling of diverse viewpoints on a system,

each depicting different kinds of entities and dependency relationships. In particular,

activity diagrams are used to model the work-flows of the system; use case diagrams

are helpful to identify the system’s main functions and its relationship with the actors

that interact with the system. These types of diagrams contain a lot of information

about dependencies as described in this deliverable as they describe the interaction

between objects.

SoaML

The Service oriented architecture Modelling Language (SoaML) is an UML profile and

meta-model for the specification of service oriented architectures adopted by OMG.

The first formal version is still under development, but a beta version dated December

2009 is available [SoaML, 2009]. Service oriented architectures are widely used in

industry to structure enterprise software systems with the aim to increase re-use of

individual software services as a level of abstraction. Dependencies are made explicit

at a high level and can be leveraged as input for TIMBUS’ dependency models.

TIMBUS D4.2 Dissemination Level: Restricted Page 31

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

With SoaML, a network of consumers and producers can be described in which each

peer consumes or provides services to fulfil a purpose. According to the specification,

SoaML supports the following capabilities: (i) Service Identification, including

requirements and dependencies between identified services; (ii) Service specification,

including the provided functional capabilities, the capabilities the consumers should

provide, the protocols and rules for using the services, and the service information

that is exchanged between consumers and providers; (iii) Service consumers and

provides definition, including the services they consume and provide, how they

connect, and how the functional capabilities provided by the services are used by

consumers and implemented by providers in a way that respects the service protocols

and requirements; (iv) Definition of policies for using and providing services; and (v)

Service and service usage requirements definition and linkage to other OMG

specifications.

BSDL

The Business Service Description Language (BSDL) has the purpose of describing

business services from a pure business perspective, addressing specifically their

decomposition and non-functional properties [Le, L. S., et al., 2010]. It aims to close

the gap existing between more strategy and goal description languages and

operational service description languages.

The modelling concepts provided by BSDL are categorised in five groups: Basic, which

includes the basic concepts of the language; Functional, which includes all the

concepts related to functional aspects of services; Non-functional, which includes all

the concepts related to non-functional aspects of business services; Lexical, which

includes all the concepts related to descriptions of business services and related

aspects; and Decomposition, which includes concepts related to service

decomposition.

The basic concepts of BSDL relevant for TIMBUS are: Business service, which

represents a high-level service provided by a business entity; Provider, which

represents a business entity that provides a Business Service; and Requester, which

represents a business entity that requests a Business Service. The relevant non-

functional concepts are: Obligation, which depicts mandatory responsibilities of

requester or providers; Environment, which is an obligation related to environmental-

friendly concerns. Obligation can be regarded as a specific type of dependencies and

are as such relevant for modelling dependencies in TIMBUS. For matters of brevity,

lexical and decomposition concepts will not be described.

TIMBUS D4.2 Dissemination Level: Restricted Page 32

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

3.3.2 Low Level Software Service Dependencies

This section discusses software dependencies inside a single machine and the current

related work in relation to dependencies of software systems. The relevance for

dependency models in TIMBUS lies in the massive number and manifold variations of

software packages depending in different ways on each other. Even in virtualised

environments for the execution of applications, the inherent software package

structure has a key role when preserving business or software services: In order to

execute a application the full set of required software packages needs to be in place –

even the smallest missing piece of digital artefacts required for execution has the

potential to render the entire application setup useless.

On a Windows or Mac system, there are still software dependencies but there is no

packaging system for sharing re-usable components. Executables in these

environments will link to libraries either statically or dynamically and are more

dependent on system level frameworks or components. On Windows there is an

installer called ‘Windows Installer’8 and on Mac it is ‘Installer’9.

Microsoft Windows Dependencies

On Windows systems the dependency system is very limited and as such software

applications written for Windows tend to check for an Operating System version and

state whether they can work based on version comparisons. This can lead to cases

where software that should be able to run cannot as there is a version number that

was not around at the time of development of the software. Software components

therefore do limited dependency checking in an ad-hoc manner.

For Windows, Dependency Walker10 checks which modules are called by other

software that is currently being executed. There exist a few other tools for extracting

software dependencies from Windows Systems but these are limited and not as

expressive as their Linux counterparts11 and for .NET dependencies1213).

Mac OSX Dependencies

Mac OSX is more interesting as it is based on a BSD-Unix type system. At the Mac OSX

level there is a similar limited dependency system that is used in an ad-hoc fashion. At

8http://msdn.microsoft.com/en-us/library/cc185688%28VS.85%29.aspx Windows Installer
9http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man8/in

staller.8.html MacOS Installer
10http://www.dependencywalker.com
11http://www.ucware.com/apev/how-to-view-dll-dependencies.htm
12http://www.reflector.net, http://www.ndepend.com
13http://tcdev.free.fr

TIMBUS D4.2 Dissemination Level: Restricted Page 33

Copyright TIMBUS Consortium 2011 - 2013

http://tcdev.free.fr/
http://tcdev.free.fr/
http://tcdev.free.fr/
http://tcdev.free.fr/
http://tcdev.free.fr/
http://tcdev.free.fr/
http://tcdev.free.fr/
http://www.ndepend.com/
http://www.reflector.net/
http://www.ucware.com/apev/how-to-view-dll-dependencies.htm
http://www.dependencywalker.com/
http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man8/installer.8.html
http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man8/installer.8.html
http://msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

the base of Mac OSX is a UNIX style system that has a similar dependency system to

that discussed in the Linux/CUDF section.

Mac OSX runs on Darwin which is a UNIX style system that is a derivative of 4.4BSD-

Lite2 and FreeBSD. BSD runs with binary ‘ports’ as packages which are then installed

with pkg_add -r package14.

During normal operation the dependency system of Mac OSX is not visible to the end

user. As such during much of the operation of Max OSX, the dependency system is not

visible to the end user and software components are handled in a manner similar to

that of Windows. If the underlying system is modified then the system does have a

dependency checking system and this acts in a similar way to that of traditional

Unix/Linux systems.

A mapping into a high level view of software dependencies denoted in mathematical

notation has been performed15. More information about the description of

dependencies and component based software systems are also available from

previous EC Project, MANCOOSI.161718 Different solvers work in different ways for

reaching a solution and there have been many International Competitions to rank and

compare their performance19 but at the base they all use the same formalism and

problem sets as their inputs.

Linux dependencies and CUDF

Linux systems were developed not by one company or a closed eco-system but rather

in an open manner. As such the development could have grown in a manner similar to

that of Windows and Mac OS where the system components are fixed and all the

applications bundle all the necessary material to make the underlying system work

with that software application. Instead the development made use of re-usable

software components at the package level. Packages are small software components

that typically encapsulate the binaries, resources and meta-information to perform a

single function. These functions are well defined and then software developers build

other software applications to match the interfaces as specified. A well-structured and

defined dependency relationship model must therefore be adhered to and this is

enforced by the use of a package management system. Developers can of course

avoid using this and build their own software components independently that do not

14http://www.freebsd.org/ports/index.html
15http://people.debian.org/~dburrows/model.pdf
16http://mancoosi.org/reports/d3.1.pdf Description of component based systems
17http://mancoosi.org/reports/tr1.pdf DUDF Description Format
18http://mancoosi.org/reports/tr3.pdf CUDF Description Format
19http://mancoosi.org/misc/

TIMBUS D4.2 Dissemination Level: Restricted Page 34

Copyright TIMBUS Consortium 2011 - 2013

http://mancoosi.org/misc/
http://mancoosi.org/reports/tr3.pdf
http://mancoosi.org/reports/tr3.pdf
http://mancoosi.org/reports/tr3.pdf
http://mancoosi.org/reports/tr3.pdf
http://mancoosi.org/reports/tr3.pdf
http://mancoosi.org/reports/tr3.pdf
http://mancoosi.org/reports/tr3.pdf
http://mancoosi.org/reports/tr3.pdf
http://mancoosi.org/reports/tr3.pdf
http://mancoosi.org/reports/tr3.pdf
http://mancoosi.org/reports/tr3.pdf
http://mancoosi.org/reports/tr1.pdf
http://mancoosi.org/reports/d3.1.pdf
http://people.debian.org/~dburrows/model.pdf
http://people.debian.org/~dburrows/model.pdf
http://people.debian.org/~dburrows/model.pdf
http://people.debian.org/~dburrows/model.pdf
http://people.debian.org/~dburrows/model.pdf
http://people.debian.org/~dburrows/model.pdf
http://people.debian.org/~dburrows/model.pdf
http://people.debian.org/~dburrows/model.pdf
http://people.debian.org/~dburrows/model.pdf
http://people.debian.org/~dburrows/model.pdf
http://people.debian.org/~dburrows/model.pdf
http://people.debian.org/~dburrows/model.pdf
http://people.debian.org/~dburrows/model.pdf
http://www.freebsd.org/ports/index.html
http://www.freebsd.org/ports/index.html
http://www.freebsd.org/ports/index.html
http://www.freebsd.org/ports/index.html
http://www.freebsd.org/ports/index.html
http://www.freebsd.org/ports/index.html
http://www.freebsd.org/ports/index.html
http://www.freebsd.org/ports/index.html
http://www.freebsd.org/ports/index.html
http://www.freebsd.org/ports/index.html
http://www.freebsd.org/ports/index.html
http://www.freebsd.org/ports/index.html
http://www.freebsd.org/ports/index.html

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

adhere to dependency relations, but then they must build software from scratch. For

continually evolving systems such as Linux this does not make sense.

On Linux and Unix-based systems the development model followed was that of

component based engineering as discussed in [Szyperski, C. 2002]. This model of

development led to packaging systems being developed [Mancinelli F, 2006]. These

packaging systems maintain software as components known as packages. Packages

are generally the smallest subset of data/resource, configuration and executable files

such that they provide a feature. Packages contain the relevant application and also

meta-data with information about what package dependencies they have. Package

installers such as RPM (RPM Package Manager) and dpkg (Debian package installer)

can read the packaging meta-data to infer if a package can be installed or removed.

More complex relations between multiple packages are determined through Package

Management Systems that read the meta-data in multiple packages that are

scheduled for installation, removal or upgrades and can determine if the packages can

be installed (satisfiability problem). If a simple solution is not available, depending on

the algorithm and heuristics used in the solver, an alternative solution may be

proposed. This may involve removing packages (that are in conflict) from the original

system or require that other packages are installed in order to reach the desired

solution (apt-pbo is an example of a solver20).

The most recent form of describing generic Linux dependencies, CUDF is now

described.

CUDF (Common Upgradeability Description Format) [Treinen, R., et al., 2008] and

DUDF (Distribution Upgradeability Description Format) are formats for describing

upgrade scenarios in package-based Free and Open Source Software (FOSS)

distributions. CUDF is one of the most recent attempts to capture software

dependencies completely on Linux systems. It is the result of a previous EC Project-

MANCOOSI21. CUDF was designed to capture and express upgrade problems in a

format that is independent of the type of GNU/Linux Operating System and allows for a

class of software tools, known as solvers, to work on identifying possible solutions for

upgrading a set of packages requested by the user. It uses the package management

systems at the base of the majority of Linux systems; dpkg for Debian type and rpm

for Redhat type systems. These package management systems are then queried for

certain information about the state of the packages as currently found on the system,

the packages available to the installer (the package universe, normally on a remote

webpage as a repository) and the request that the user or machine has requested

(upgrade request/manifest). The DUDF format compliant request is generated on a per

distribution basis. This is dependent on the type of installer that is being used on the

20http://aptpbo.caixamagica.pt
21http://www.mancoosi.org

TIMBUS D4.2 Dissemination Level: Restricted Page 35

Copyright TIMBUS Consortium 2011 - 2013

http://www.mancoosi.org/
http://aptpbo.caixamagica.pt/

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

distribution. The tools identify the corpus of packages that are available to the installer

at the time the upgrade request is made. The full requests are then captured in a

standardised manner and submitted to a centralised server based on the distribution.

The distribution servers collate the information and convert the DUDF files into CUDF.

The CUDF files are more abstract and describe relationships between packages at a

higher level than DUDF. The CUDF representation is then submitted to a centralised

repository where the upgrade problem sets can be collected. For TIMBUS, the upgrade

request, when capturing the state of the system, is less important and the reasoning

system will be used to infer whether certain dependencies are met.

3.4 Modelling and Capturing Hardware Dependencies

All IT supported business processes and software services require hardware at their

lowest level for execution and this holds true for Virtualised Operating Systems. In

order to capture artefacts to be preserved effectively, we therefore have to consider

hardware and hardware dependencies accordingly. For TIMBUS purposes, it is useful to

have the complete set of hardware dependencies identified prior to archiving and

document the dependencies in the archive such that in the case of exhuming business

processes the entire software-hardware set can be can be understood and recovered

accordingly.

Hardware dependency analysis is a subset of the larger area of inventory and asset

management. Any large enterprise organisation or IT department can expect to be

using tools available today to aid with asset management such as SAP Enterprise

Management22, IBM's Enterprise Asset Management23 and Xasset's Asset

Management24. These are essentially inventory tools which will automatically scan all

devices on the network to build up a map of the IT landscape. The primary motivators

for these would include licence auditing, configuration and policy management, and

asset tracking.

Existing tools work well for established and commonly used enterprise operating

systems and application suites but are less effective for bespoke or in-house

developed applications.

A further limitation is the lack of a robust capability to determine the hardware

dependencies for specific operating systems or software prior to deploying it for the

first time. In Section 3.4 of this deliverable, the idea of hardware compatibility lists

(HCLs) for operating systems was mentioned but a typical OS deployment today

22http://www.sap.com/solutions/enterprise-asset-management/features-functions/index.epx
23http://www-01.ibm.com/software/tivoli/solutions/asset-management/
24http://www.xassets.com/asset-management-software.aspx

TIMBUS D4.2 Dissemination Level: Restricted Page 36

Copyright TIMBUS Consortium 2011 - 2013

http://www.xassets.com/asset-management-software.aspx
http://www-01.ibm.com/software/tivoli/solutions/asset-management/
http://www.sap.com/solutions/enterprise-asset-management/features-functions/index.epx

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

happens over the network and will only fail during the install process, not prior to it, in

the case where the hardware is not on the HCL.

Hardware discovery, as part of inventory scanning, is carried out in several ways and

the approaches can be different depending on factors such as the functionality

provided by the hardware vendor, the choice of operating system and the choice of

scanning tool (commercial, open-source, in-house developed). The following section

will describe the practices used in industry today. However, it should also be noted

that none of these allow for the identification of anything except the most basic of

hardware dependencies such as requirements of available disk space.

Hardware vendors often provide supplementary manageability tools to aid in

distinguishing their offerings in the market. These can be based on non-proprietary

standards such as support of Simple Network Management Protocol (SNMP) or they

can be hardware based, for example Intel® vPROTM, 25 and Intel® Remote Management

Module26 (RMM), both based on Intel Active Management Technology27 (iAMT).

3.4.1 Capturing based on Non-proprietary Standards

Protocol standards such as SNMP28 can be used to exchange device configurations.

SNMP uses an extensible architecture which does not seek to define all the types of

management metadata that can be exchanged by compliant devices. Instead data

describing device configurations can be designed and exchanged for management

purposes. It relies on a central management device and an agent which runs on each

managed device. Network devices typically support ICMP router discovery capabilities

as part of the definition of RFC 1256. Some inventory scanning tools may rely on the

use of such standards to discover information about the hardware environment as part

of IT operational support or auditing.

Other relevant standards in this area exist. For example, FIPA (Foundation for

Intelligent Physical Agents)29 is a standards body which was founded in 1996 but has

been part of IEEE since 2005. FIPA has developed standards and ontology’s which

control communications between software agents running on diverse physical devices.

25http://www.intel.com/content/www/us/en/architecture-and-technology/vpro/vpro-technology-

general.html
26http://www.intel.com/content/www/us/en/server-management/intel-remote-management-

module.html
27http://www.intel.com/technology/platform-technology/intel-amt/
28http://tools.ietf.org/html/rfc3411
29http://www.fipa.org/

TIMBUS D4.2 Dissemination Level: Restricted Page 37

Copyright TIMBUS Consortium 2011 - 2013

http://www.fipa.org/
http://tools.ietf.org/html/rfc3411
http://www.intel.com/technology/platform-technology/intel-amt/
http://www.intel.com/content/www/us/en/server-management/intel-remote-management-module.html
http://www.intel.com/content/www/us/en/server-management/intel-remote-management-module.html
http://www.intel.com/content/www/us/en/architecture-and-technology/vpro/vpro-technology-general.html
http://www.intel.com/content/www/us/en/architecture-and-technology/vpro/vpro-technology-general.html

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

3.4.2 Capturing based on Hardware

The biggest advantage of hardware solutions for capturing device data is that they do

not require the operating system to be online to provide configuration and

management functions. These devices are primarily used to aid in remote support or

Operating System deployment rather than for inventory purposes. Not only can they

report detailed hardware specifications, but they can also provide remote sensor data

and they can send alerts about failed system components.

3.4.3 Capturing based on Operating System

Operating Systems often contain some built-in mechanisms for gathering system

configuration information via in-house developed scripts. In the case of Microsoft

Operating Systems, this is primarily supported by WMI (Windows Management

Instrumentation) and Windows Script Host (WSH). UNIX operating systems have

always inherently supported these features through Perl, shell scripts and utilities.

3.4.4 Capturing based on Scanning Tool

To overcome the work-intensive maintenance of scripts, there is a wide range of

commercial and open-source scanning tools at hand. These applications focus on

gathering system configuration data for Windows, UNIX and other types of devices.

They are used for a multitude of administrative tasks and could be reused for TIMBUS

purposes to some extent. The tools are typically capable of gathering hardware

information in whatever level of granularity is available to the user-mode processes.

3.5 Extraction of Information

In order to effectively preserve information, automatic or semi-automatic data

capturing mechanisms should be in place, so that any associated context information

required for its correct rendering and processing is gathered so that it can be

preserved together with it.

The implementation of the context and data mining tools is left for deliverables D6.2

and D6.5. This section discusses general challenges in capturing data and information,

describes how to extract information from business processes and, at the most

detailed level, how to retrieve information from IT systems.

There is no general solution to the extraction and capturing task. The concrete

methods and techniques depend on the respective contexts and differ in business

domains and IT areas.

TIMBUS D4.2 Dissemination Level: Restricted Page 38

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

3.5.1 Data and Information

The term information should be stressed a lot because information are the essence

describing the processes. Unfortunately, the terms data and information are often

used synonymously, but the concepts as used in TIMBUS is explained in Annex (Annex

A.2 - Dependencies in Service Operation and Lifecycle Processes). The distinction

between data and information is substantial and can be made by semantics.

Semantics transforms data into information. The well-established information model in

information science makes the distinction like it is illustrated in Figure 8 (cf. Krcmar,

H., 2005). The bitstream is turned into data when a specific syntax is postulated and

the bitstream can be interpreted by an application like a relational database or a word

processor. Adding intellectual background (ie., context and semantics) then turns data

into information. Having this in mind, it becomes clear that the long term archiving

approaches also require to preserve syntax and context to be capable of re-

interpreting data with the correct semantics in a specific context.

Figure 8: The research information model

3.5.2 Data persistence variants and challenges

Flat files

Different methods for persisting data/bitstreams have been established. The report in

[Knijff et al., 2011] provides an evaluation of several file characterisation tools, some

of which use the services provided by PRONOM. A lightweight approach for storing

data is the usage of so called flat files in the file-systems. An example of this are the

widely established local storing mechanisms offered by the “office suites”. The

concept is well-suited even for complex digital artefacts. Flat files are not limited to

local file systems but can also make use of shared file systems or other storage media.

It is an established paradigm for storing data. But the concept poses some challenges

especially with a view on digital preservation. The initial challenge is the different

interpretation of bit streams in the different operating systems and language packs.

Another issue is the complexity in identifying the application needed to interpret a

TIMBUS D4.2 Dissemination Level: Restricted Page 39

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

special file. Services like it is offered by the PRONOM initiative30 deal with this

challenge by offering information about numerous file formats.

Techniques like hyperlinks increase the complexity of files. Hyperlinks are offering a

mechanism for making dependencies between files explicit. Furthermore, the

“enhancement” of files with scripting languages like VisualBasic for Applications or

JavaScript increases the complexity of files.

The capabilities of modern file systems like versioning mechanisms and search

functionalities are upcoming challenges for the digital preservation, because they

change the behaviour of software and define new hard-to-detect dependencies

between different applications.

Databases

In contrast to the lightweight approach of a file system stands the more complex

concept of databases. A database offers mechanisms for structuring data and manage

it, for ensuring the integrity of data and optimising the performance of queries. One

commonly used concept is currently the concept of relational databases. However,

database are well accepted approach for managing big sets of relatively small data. All

kinds of databases offer powerful mechanisms for providing structural information and

within the explication of dependencies. The particular challenge in extracting data is

that most of the systems are extended with vendor specific functionality which

negatively influences the portability.

Cloud storage

A currently hyped topic in persisting is “Cloud based storage”. A lot of research as well

as a growing interest in all business sectors can be observed at this time. Cloud

services can be categorised by their service layer and are then called XaaS (with X

being the respective service layer, e.g., infrastructure, software etc) (c.f. [Rimal, B.P.,

et al., 2009]). The challenge for digital preservation of cloud services is that the

service is opaque for the user. This means that only the service layer can be accessed

and typically no further details are revealed. For example if a user wants to use a

relational database in a Platform-as-a-Service (PaaS) environment, he has no access to

the database configuration or to the physical database files. This problem area is

similarly present for all cloud service levels and is not restricted to the area of data

capturing but will influence the understanding of the preservation of the data context

in general.

30http://www.nationalarchives.gov.uk/PRONOM

TIMBUS D4.2 Dissemination Level: Restricted Page 40

Copyright TIMBUS Consortium 2011 - 2013

http://www.nationalarchives.gov.uk/PRONOM

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Big Data

Another upcoming challenge is the handling of big data. The easiest definition made

by Edd Dumbill is: “Big data is data that exceeds the processing capacity of

conventional database systems. The data is too big, moves too fast, or doesn't fit the

strictures of your database architectures.“ [Dumbill, E., 2012]. With big data, all

approaches like databases, files and cloud are brought together and seen in an holistic

way. Illustrative examples for big data are the established social networks or business

intelligence solutions which integrate different heterogeneous data sources. Big data

brings uncertainty into computing in that it is neither necessary nor even possible to

process all data in a deterministic way but enough data for making feasible decisions.

To summarise, all described kind of data and consequently information needs specific

methods for capturing. Capturing information is more than simply copying well

understood files into an archive. With the increasing complexity of the types of data

storages the complexity of preserving information is also expected to grow.

3.5.3 Extraction of Business Process Information

The gathering of information regarding business processes is an highly relevant topic,

e.g., with regards to performance or compliance concerns [Sadiq, S., et al., 2007]

[Ghose, A., et al., 2007]. It is obvious that methods for extracting the current state of

processes are necessary to preserve the processes. Dependencies from business

process are crucial for the preservation of business process to achieve a complete

picture of what is to be preserved.

The area of Business Process Management (BPM) has the aim of providing support to

business process by the use of methods and techniques to design, execute, control

and analyse business processes, provided that there is sufficient information to make

them explicit [Van der Aalst, et al., 2003]. The BPM area includes the area of workflow

management dealing with the design, configuration and enactment of processes,

additionally including diagnosis dealing with the analysis and improvement of

processes. One way of capturing business process data is through the use of formal

modelling languages for the design of business processes for reasons of

documentation or for execution. In practise, although design approaches are quite

popular, they sometimes fail in capturing the reality [Van der Aalst, et al., 2007].

One of the ways of collecting information about business processes is through process

mining. Process mining is a combination of approaches to capture process information,

such as modelling and simulation, which might present a not so accurate or even

distorted view of reality. Process mining has the aim of discovering process, control,

data, organisational and social structures using event logs generated by a wide range

of enterprise applications [Van der Aalst, W. M. P., et al., 2007].

TIMBUS D4.2 Dissemination Level: Restricted Page 41

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Event logs contain time stamped information about events happening in a system.

Each event can be related to an activity in the context of a process and has a

performer. By collecting that information from several enterprise systems, causal and

dynamic dependencies between events can be captured and lead to the automatic

construction of business process models that truly reflect reality.

Typically, it is possible to assume three different perspectives concerning the

information present in event logs. Firstly, the process perspective (also referred as the

“How?”), which focuses on the control flow can be reconstructed; secondly, the

organisational perspective (also referred as the “Who?”), which focuses on the

performers of the activities involved in a process can be derived; and lastly the case

perspective (also referred as the “What?”), which focuses on the properties of the

cases, or process instances (e.g., the number of products ordered in an buy order) can

be mined. However, process mining and its associated techniques also suffer from

problems, such as noise and exceptions, which might render a process model

incomplete [Van der Aalst, et al., 2003].

3.5.4 Runtime Information extracted from IT systems

More detailed information can for example be mined from Operating Systems. The

possibilities for extracting information from the operating system strongly depend on

the level of transparency of the system. In this case open source system have a strong

advantage. Because the source code is available (or at least the interfaces are well

documented and standardised) it is relatively easy to determine most of the

information through scripts and system-calls in operating systems like Linux, BSD or

the other UNIX-compatible systems. This includes the dependencies of the different

components.

The following illustrates some simple example of how information can be captured.

The hardware if recognised by the system and enumerated can be easily captured as

well using standard methods such as “lshw”. The file system mounts as found on the

system normally can be found in “/etc/fstab”. Information about other hardware can

be found under “/dev/” and “/proc/” on most Linux machines. Other methods can be

used for determining the kernel details such as version “uname -r”. Most of these

methods are well established and have been used by system administrators for

managing systems. These calls and scripts can be bundled into management systems

and can also be run by data-miners.

This information can be used for generating the context of individual machines by

investigating the hardware and configuration on individual systems. It is also possible

to use package management systems to determine what software is installed on a

system and to query that database to see which packages are installed, see also

Section 3.3.2.

TIMBUS D4.2 Dissemination Level: Restricted Page 42

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Data mining can also be done remotely through passive and active methods. Most

passive methods rely on sniffing Internet traffic that passes through a network

medium and analysing the packets to see what type of data is being carried in them.

This has led rise to many applications that can determine various amounts of

information by passively viewing data on a network31.

Active methods can also be used to attempt and trigger certain behaviours on remote

systems and depending on the behaviour it can sometimes be determined what sort of

system is responding through its characteristic responses. There are some open-

source data mining tools for software and applications such as the Java machine

learning library of WEKA32.

On closed source systems like Mac OSX, BeOS or Windows it is more difficult to extract

all the useful data as different flavours of the operating systems come with different

methods for storing and managing the information about a system and not all of them

are well documented. In Windows a lot of the configuration and settings data for the

system and its applications are stored in a key-value pair repository also known as

the Registry. Different systems may have different ways of storing data and this soon

becomes a difficult problem to manage and as such there were attempts made to use

Policy Managers that used established methods for retrieval of data. This situation is

somewhat improved by formal, standard methods and protocols for capturing

information. Most of the time though, Enterprise solutions need to maintain

mechanisms for interacting with old OS' and as such will go through a series of steps

to attempt to determine what type of system is on the Network. Sometimes though

support is removed and as such it can sometimes be difficult to retrieve information

about legacy systems through modern OS. An example of a change that affects users

and administrators is the location of the User folder. Between successive iterations of

Windows versions it moved between being at “C:/Documents and Settings/” to

“C:/Users” etc. When storing data some of this information would be hard coded into

old software and as such causes problems with new Operating Systems and hence is

the reason why some systems such as Windows 7 have a legacy XP mode for allowing

older software to run that has the context of the old environment. This is used to help

users who have migrated to new OS' but cannot use older applications due to them

not being migrated to the new OS.

To summarise, there is a cost associated with data and information gathering. For

certain components it may be more effective for collating data as it may be more

accessible and require less effort for mining. Extracting the context of the whole

system results in total preservation as all the information is gathered. For digital

preservation of a business process it may be acceptable for a less complete set of

31http://nmap.org/book/osdetect.html
32http://www.cs.waikato.ac.nz/ml/weka/

TIMBUS D4.2 Dissemination Level: Restricted Page 43

Copyright TIMBUS Consortium 2011 - 2013

http://www.cs.waikato.ac.nz/ml/weka/
http://nmap.org/book/osdetect.html

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

information to be gathered. If a lower level of accuracy is acceptable, on-demand

virtualisation and preservation of the entire system may be a feasible alternative,

because it captures the current state of a machine, all dependencies are included.

3.6 Information modelling

Information modelling is associated with topologies and ontologies. In general,

topology is a term used when describing the structure or form of an object, e.g.

mathematical topology, network topology, software topology. With regards to

dependency analysis, software topology models, which are used to describe elements

and interconnections of enterprise software systems, are particularly of interest. For

simplification reasons, software topology models are in this deliverable simply referred

to as topology models.

A similar addressed challenge is the preservation of the object’s meaning. Especially

the preservation of today’s tacit knowledge has to be addressed. An initial step is the

modelling of the knowledge. This can be made by using ontologies which are strongly

related with topologies. An ontology formally represents knowledge as a set of

concepts within a domain (a standard approach using taxonomies for this purpose),

and the relationships between those taxonomies.

There are several topology models and ontologies that cover different aspects of

enterprises. Each has its advantages and disadvantages as well as its specific areas of

focus (domain specialisms). In the next sub-section we discuss a well established

standard used for modelling semantics RDF/OWL. An example of a tool that can be

used for modelling the relations between software components in an enterprise

environment is IBM Rational Software Architect whose system is described in more

detail along with the description of the relations that it models, in Annex (Annex A.3 –

Dependency relations as mapped by IBM Rational Software Architect). Also another

related work is that of the OAIS informational model, which as it covers specific digital

preservation issues is in Section 3.7.1.

3.6.1 Enterprise Ontology

The Enterprise Ontology, is a collection of terms and definitions relevant to business

enterprises. It was developed as part of the Enterprise Project, a collaborative effort to

provide a method and a computer toolset for enterprise modelling.

The Enterprise Ontology is composed by a set of entities and relationships between

entities. Entities can have roles in relationships. An attribute is a special kind of

relationship and a state of affairs a situation which is characterised by a combination

of entities in any number of relationships with one another [Uschold M., et al., 1996].

The main relationships of the enterprise ontology are depicted in Table 1.

TIMBUS D4.2 Dissemination Level: Restricted Page 44

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Table 1: The main relationships described in the Enterprise Ontology

Type Description

Entity A fundamental thing in the modelled domain.

Examples: (1) a human being; (2) a plan.

An entity can participate in relationships with other entities. There is

no distinction between a type of entity, and a particular entity of a

given type. The word entity is used with explicit reference to a certain

thing, but most of the references to entity in this ontology implicitly

define a category or type of entity.

Relationship Is the way two or more entities can be associated with each other.

Examples: (1) The have-capability is a relationship between a person

and an activity denoting that the person is able to perform the

activity; (2) a sale is a relationship constituting an agreement

between two legal entities to exchange a product for a sale price.

A relationship is itself an entity that can participate in further

relationships

The words relationship has many meanings in natural language. The

following meanings are important but logically distinct concepts that

relationship commonly refers to:

1. The kind of relationship (closest to above definition);

2. A name given to the kind of relationship (e.g. marriage);

3. A particular relationship between particular entities.

Examples: (1) Bill and Hillary Clinton are in a marriage

relationship; (2) Einstein was in a have-capability relationship

with the activity of thinking.

Further distinctions can be made reflecting the use of the

mathematical concept of tuple.

Role Is the way in which an entity participates in a relationship.

Examples: (1) Vendor is a role played by an entity in a Sale

relationship.

A participating entity is said to be playing the role. Strictly speaking,

the correct way to refer to an entity playing a particular role is to use

a phrase like ‘the Entity playing the Vendor role’. This is awkward,

TIMBUS D4.2 Dissemination Level: Restricted Page 45

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Type Description

and instead, we will often use the shorter phrase ‘the Vendor’.

Attribute Is a relationship between two entities (referred to as the ‘attributed’

and ‘value’ entities) with the following property: within the scope of

interest of the model, for any particular attributed entity the

relationship may exist with only one value entity.

Example: Date of Birth is an attribute associating only one Date with

a given Person.

From a mathematical perspective, an attribute is a function.

State of

affairs

Is a situation; the following is necessarily true of a state of affairs: (1)

it consists of a set of relationships between particular entities (E.g.

‘Joe Bloggs can lay bricks’ (i.e. is in the Have-Capability relationship

with the Activity: bricklaying.’)); (2) it can be said to hold, or be true

(and conversely to not hold or to be false).

Achieve Is the realisation of a state of affairs; i.e. being made true.

When the state of affairs is a purpose, one would frequently say it is

being ‘accomplished’.

TIMBUS D4.2 Dissemination Level: Restricted Page 46

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

3.6.2 TOVE Project

The TOVE project, acronym of Toronto Virtual Enterprise project is a project to develop

an ontological framework for Enterprise Integration (EI) based on and suited for

enterprise modelling. In the beginning of the 1990s it was initiated by Mark E. Fox and

others at the University of Toronto.

The basic entities in the TOVE ontology are represented as objects with specific

properties and relations, these relations are depicted in Table 2.

Objects are structured into taxonomies and the definitions of objects, attributes and

relations are specified in first-order logic. The ontology is defined in the following way;

TOVE first identifies the objects in the domain of discourse that will be represented by

constants and variables in TOVE’s syntax [Fox M., et al., 1997]. Subsequently the

properties of these objects are identified as well as the relations that exist over these

objects and these are represented by predicates in TOVE.

Table 2: The main relationships described in TOVE

Type Description

Goal TOVE models organisation goals that can be decomposed into an

AND/OR subgoal trees, and can be achieved by executing activity

clusters.

Organisation

agent

An organisation-agent is an individual member, a human being, in

the organisation. The concept of organisation-agent can be

extended to include machine agent or software agent if needed.

An organisation-agent is a member of some division, plays one or

more roles in the organisation, can perform activities, and

communicate with other organisation agents using

communication-links.

Division Each organisation-agent is member of or affiliated with some

division (or sub-division) in the organisation.

In the model each agent is a member of some division: Each

organisation-agent is member of or affiliated with some division

(or sub-division) in the organisation.

Team An organisation-agent may also be a member of some teams set

up to pursue specific tasks in the organisation. Compared to

division which is usually a long-term setup within the organisation,

team is temporary in nature and is usually set up when needed.

Members of a team may be from different divisions and there may

be many teams set up in the organisation. The relationship

between an agent and a team is ‘member of’, which means an

agent is a member of a team.

TIMBUS D4.2 Dissemination Level: Restricted Page 47

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Type Description

Only two or more members can form a team. A team, as a whole,

can play a role in the organisation. If everyone in a team plays a

same role, we also say that the team plays the role.

Communication

-link

Communication-links are established among organisational agents

in various roles. Communication-links capture the notion of

benevolent communication in which agents regard each other as

peers volunteer information that they believe relevant to other

agents. This exchange does not create obligations for any agent.

The communication-link is a unidirectional link used to

communicate information from one agent to another. It describes,

for an agent in a given organisational role, the information it is

interested in receiving and the information it can benevolently

distribute to others

For example, an agent in the “C++ programmer” role may

distribute information about the state of the file server to other

programmers, alerting them each time the server is down.

The communication-link specifies: (1) Sending-Agent, the agent

sending information along the link; (2) Receiving-Agent, the agent

receiving information from the link; (3) Sending-Role, the

organisation role played by the sending agent; (4) Receiving-Role,

the organisation role played by the receiving agent; (5) Interests,

the information interests of the receiving agent; (6) Volunteers,

the information the sending agent can supply to other agent.

Authority A special kind of authority is the control relationship between two

organisational agents (OA). For OA1 to have authority over OA2

implies that OA1 is able to extract a commitment from OA2 to

achieve a goal that is defined as part of OA2’s organisation-roles.

In order to extract that commitment, OA1 has to be related

directly or indirectly by a communication-with-authority link

relation.

The Communication-with-Authority link, used when communication

is intended to create obligations, specifies the two agents, one in

the authority position (called supervisor) and the other in the

controlled position (called supervisee), among which

communication takes place. Because we model communication as

exchange of speech-acts, authority of an agent appears as the set

of speech-acts this agent can use in order to create obligations for

the other agent. For example, an agent may have authority to

request another agent to perform action A1, but not to perform

TIMBUS D4.2 Dissemination Level: Restricted Page 48

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Type Description

action A2. In this case, the second agent will have to commit to

achieving A1 when requested by the first agent, but not A2.

Commitment We introduce the concept of an OA’s commitment to achieving a

goal. The predicate ‘committed to’ signifies that agent is

committed to the achievement of goal. Consequently, the totality

of activities performed by the agent must include the achievement

of the goal. Prioritisation of goals, etc. are not considered here.

Any agent that fills an organisation role is committed to the goals

associated with the role.

An agent can only allocate resources that have been assigned to a

role it plays.

Empowerment We introduce the concept of Empowerment as a means of

specifying the status changing rights of an agent. Empowerment is

the right of an agent to perform status changing actions, such as

"commit", "enable", "suspend", etc. Empowerment naturally falls

into two classes: state and activity empowerment.

State empowerment specifies the range of status through which

an agent may take a state by performing the appropriate actions,

such as commit. State empowerment not only specifies allowable

status changes but may be used to restrict the set of resources an

agent is empowered to commit to a use/consume state. An agent

may be empowered for any type of resource, including other

agents. The implication being the first agent may commit the

second to a state.

3.6.3 Resource Description Framework

The Resource Description Framework (RDF33) is a family of W3C consortium

specifications for describing the relations between web-formats. As it has been

adopted in industry and by the community in general, further uses have been used for

describing general conceptual modelling.

A more complete description is included in Deliverable D4.5 and to avoid repetition

only the elements concerning Dependencies will be described in this Deliverable.

33http://www.w3.org/RDF/

TIMBUS D4.2 Dissemination Level: Restricted Page 49

Copyright TIMBUS Consortium 2011 - 2013

http://www.w3.org/RDF/

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Overview of the framework

RDF is a model that was developed to allow for data interchange on the web. RDF

extends the linking structure of the web to allow for the description of relations of data

resources by linking two objects with a relationship. To this end, RDF provides a formal

syntax and semantics for so-called triples. Each triple consists of a “subject”, a

“predicate” and an “object”, usually denoted as “(subject predicate object)”. A set of

one to many RDF triples is referred to as an “RDF knowledge-base”.

Approach taken

The semantics used varies between the different nomenclatures used but generally a

serialised description of triples are used to describe two entities and their connected

relation. The order of the two objects is important as there are some uni-directional

properties of relationships. If a relationship is symmetrical then the order is not

important. The approach ends up intrinsically deriving the description of a multi-

directed, labelled graph.

Dependency relations taken into consideration

At the base any relationship can be defined between two entities. RDF does not

stipulate the use of, or provide any base relationships. This means that there is a large

amount of flexibility but it also means that all the rules for the relationships have to be

defined for anything that wishes to make use of this construct. As the description is

normally text-based it also makes it difficult without adding an extra indirection level

for using weighted or valued dependency relations. Using the extensibility of XML and

XSD schemas it is possible to extend these dependency relations.

Implementation examples

A simple example of RDF is copied from W3Schools34

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:cd="http://www.recshop.fake/cd#">

<rdf:Description rdf:about="http://www.recshop.fake/cd/Empire Burlesque">

<cd:artist>Bob Dylan</cd:artist>

<cd:country>USA</cd:country>

<cd:company>Columbia</cd:company>

<cd:price>10.90</cd:price>

<cd:year>1985</cd:year>

</rdf:Description>

34http://www.w3schools.com/rdf/rdf_example.asp

TIMBUS D4.2 Dissemination Level: Restricted Page 50

Copyright TIMBUS Consortium 2011 - 2013

http://www.w3schools.com/rdf/rdf_example.asp

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

<rdf:Description rdf:about="http://www.recshop.fake/cd/Hide your heart">

<cd:artist>Bonnie Tyler</cd:artist>

<cd:country>UK</cd:country>

<cd:company>CBS Records</cd:company>

<cd:price>9.90</cd:price>

<cd:year>1988</cd:year>

</rdf:Description>

</rdf:RDF>

This example uses two name-spaces, one for “rdf” and one for “cd”. Each namespace

is further defined using the schema that are linked to at the beginning of the

description. This example is of RDF in XML serialised fashion. Each of the relations are

those denoted by the properties (eg. Cd:country, relation is country). The object of

each relation is the value stored between the markers (eg. For cd:country for Hide

your heart is UK). This means that the subject : relation : object would be, cd/Hide your

heart : country : UK.

Limitations

Most of the limitations are due to the serialisation of RDF when used in RDF/XML form.

The relationships in larger examples soon becomes unwieldy and is complex to parse

with traditional XML parsers. Apart from that the main limitation is that since RDF is so

flexible it requires work before it is usable. More discussion into the limitations of RDF

can be found on the web35.

3.6.4 Web Ontology Language RDF/OWL

The Web Ontology Language (OWL) is a family of knowledge representation languages

for authoring ontologies. RDF is flexible enough to serve as a basis for development of

OWL and as such is one of the more common serialisation formats for OWL.

A more complete description is included in Deliverable D4.5 and to avoid repetition

only the elements concerning Dependencies will be described in this Deliverable.

Overview of the system

The OWL standards in it’s different versions are consecutive approaches from the

Semantic Web community which are based on a small subset of the family of

Description Logics (DL). Each DL is a restricted part of predicate logic, whereby all

description logics have in common that they are decidable (which predicate logic is

not) to make them practically tractable.

35http://eulergui.sourceforge.net/n3_rules_good_practices.html#L587

TIMBUS D4.2 Dissemination Level: Restricted Page 51

Copyright TIMBUS Consortium 2011 - 2013

http://eulergui.sourceforge.net/n3_rules_good_practices.html#L587

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

OWL-DL (Description Logic) is preferred to be used due to the possibility to reason

about it unlike the highly expressive full variant. More detail is given in D4.5.

Dependency relations taken into consideration

The dependency relations in OWL are more expressive than raw RDF which has no

formal relation mappings. Based on description logic subsumed into OWL there are a

series of relations that help to explain whether an entity is in the same range and

domain of others as well as other relations. More recent additions have allowed further

expressibility for properties in OWL. “Number Restrictions”, “Inverse-Roles” and “Role

Inclusions” are examples of some the formal extensions implemented by the latest

version of OWL.

3.7 Digital Preservation

The last aspect to be discussed in this section is digital preservation that is relatively

novel to the enterprise community and is being addressed by TIMBUS. The modelling

of dependencies of digital objects is one of the primary concerns of digital

preservation. It is required to keep objects and their dependencies understandable,

accessible and unrelieved. The fact that the context of an object changes over time

adds special requirements to digital archives. In this part we reflect the common

understanding of information modelling in an archive and projects dealing with

changing contexts and scopes.

3.7.1 OAIS Information Model

The Reference Model for an Open Archival Information System (OAIS) [OAIS, 2002] is

the de-facto reference model for digital preservation. It has also been adopted by ISO

as standard ISO 14721:2003 [ISO14721:2003]. It defines the entities and relationships

of the digital preservation domain, providing a common terminology that can be used

when approaching the problem of building archival systems that are capable of

effectively performing digital preservation.

Besides providing the terminology, it also provides a reference information model for

guiding the implementation of information packages for preservation. The OAIS

considers that an Information Object is composed of a Data Object and the

Representation Information, which adds meaning to the data object, so that it can be

interpreted in the future. The Representation Information might contain Structure

Information, which describes the way the data on a data object is structured, Semantic

Information, which provides meaning to the structures defined by the Structure

Information, and other Representation Information, such as Representation Networks,

TIMBUS D4.2 Dissemination Level: Restricted Page 52

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

which might contain all the linkages of Data Objects and Representation Information

required for interpreting a Data Object36.

In order to be preserved, information needs to be packaged along with the information

that allows its interpretation in the future. Three types of Packages are defined in the

OAIS: the Submission Information Package, for submission by the producers of

information into the archive for preservation; the Archival Information Package, for

long term preservation; and the Dissemination Information Package, for dissemination

into the future consumers of information.

Different specialisations of Information Object are possible:

 Content Information, which represents the data object targeted for preservation

and the accompanying Representation Information;

 Preservation Description Information, which includes information that is needed

in order to adequately preserve the Content Information;

 Packaging Information, which binds or related the components of the package

to be preserved (Content Information plus Preservation Description Information)

into an identifiable entity;

 Descriptive Information, which allows the search for and retrieval of the

information packages.

The main classes and relationships within the OAIS information model are depicted in

the UML-class diagram in Figure 9.

It's shown, that the OAIS offers possibilities, to preserve the relation between objects

and at least parts of the semantic of data.

36Representation Information is itself a Data Object, and as such it might need its own

Representation Information

TIMBUS D4.2 Dissemination Level: Restricted Page 53

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Figure 9: OAIS Information Model [OAIS, 2002]

3.7.2 PREMIS

The PREservation Metadata: Implementation Strategies (PREMIS37) Working Group has

defined a data dictionary of preservation metadata relying upon the concepts of

Intellectual Entity, Object, etc, and on the relationships between these conceptual

entities. The PREMIS preservation dictionary [OCLC, 2005] is implementation

independent as the elements define information needed for preservation regardless of

how that information is stored. By means of the preservation dictionary, PREMIS

provides semantics for digital archives (and therefore, for OAIS). The semantics from

PREMIS carry dependency relations for information such as usage notes, applicability,

object categories, data constraints and a rationale.

An Intellectual Entity is a set of contents that can be described as a unit. For example,

an Intellectual Entity as a web site may be composed of many objects, such as several

web pages and images. An Object is the basic unit of information in the digital form.

object entities contain preservation information about the object which it refers to,

such as checksum, digital signature, provenance information, and relation to other

objects, e.g., the source object to the migration.

37http://www.loc.gov/standards/premis/

TIMBUS D4.2 Dissemination Level: Restricted Page 54

Copyright TIMBUS Consortium 2011 - 2013

http://www.loc.gov/standards/premis/

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

3.7.3 CASPAR Preservation Networks

CASPAR - Cultural, Artistic and Scientific knowledge for Preservation, Access and

Retrieval - is an Integrated Project co-financed by the European Union within the Sixth

Framework Programme (Priority IST-2005-2.5.10, "Access to and preservation of

cultural and scientific resources")38. The aim of the project is to fulfil the need of

maintaining understandability over the long-term [Giaretta, D., 2007].

CASPAR developed the notion of preservation network models with the intention of

representing digital objects and relationships, depicting the dependencies existing

between objects, so that these can be understood in the future and preservation

objectives are met [Conway, E., et al., 2011]. These preservation networks can then

be stored in registry repositories of representation information, so that knowledge can

be reused.

Preservation networks are represented in a similar fashion to that of class diagrams,

depicting to kinds of entities: Objects, which are uniquely identified digital entities with

the attributes of information, location, and physical state; and Relationships, which

have the attributes of function (for depicting any necessary function to be performed

on object), risks and dependencies, tolerance (if the absence of a determined function

is critical or not), and quality assurance and testing (if a determined function has been

subjected to testing or quality assurance). Relationships can be composed in to

alternate or composite relationships, depicting respectively the fact that only one

relationship needs to function or the fact that all the relationships must function in

order to fulfil the objective. The graph in Figure 10 depicts such a preservation

network.

38http://casparpreserves.eu

TIMBUS D4.2 Dissemination Level: Restricted Page 55

Copyright TIMBUS Consortium 2011 - 2013

http://casparpreserves.eu/

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Figure 10: Preservation Network Example [Conway, E., et al., 2011]

Preservation actions can be enforced on networks, which can alter their structure.

Different kinds of actions can be applied on preservation networks: Risk acceptance

and monitoring, which involves the active monitoring of dependencies and the

acceptance of risks in case an object is dependent on external information.

CASPAR Preservation Networks describe objects, classes and relations relevant to

digital preservation of artefacts whereas the Formalism describes the relevant objects,

classes and relations for digital preservation of business processes. The distinction

between digital artefacts and business processes separates the work between TIMBUS

and CASPAR. Another key differentiating factor between the two projects is that the

purpose of the Formalism is to capture the formal semantics to enable reasoning

mechanisms to work with the model generated. This does not simplify the problem but

allows for the problem to represented in a manner that allows for automated, correct

and complete reasoning tools to be used that exist within the knowledge engineering

community.

TIMBUS D4.2 Dissemination Level: Restricted Page 56

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

4 Formal Language Specification

This Deliverable presents the first iteration of a formal language for describing

dependencies throughout the scope of an enterprise. Due to the fact that

dependencies link classes of entities and that the contextual information is based

around the entities, there is a strong link between the work carried out in this

Deliverable and that of D4.5 from the first Context Modelling Deliverable (Business

Process Contexts), from Task 4.4. To avoid repetition in the description of the

Formalism from this Deliverable we focus on the categorisation and description of

dependencies whereas D4.5 investigates further into contextual parameters and

properties of entities as does the subsequent Deliverable, D4.9 (Refined Business

Process Contexts).

The first iteration of the Model proposed and discussed in this Deliverable will be

further detailed in the subsequent Deliverable based on the same Task (T4.2), D4.3

(Dependency Models Iter. 2). This refinement will look to further improve the

description of entities and better express the relationships between components such

that further reasoning can be applied to the problem space. The model is a

representation of the connectivity between various components specified in the

Formalism.

For the purpose of modelling the dependencies (including semantics) existing between

the entities that compose a business process and its context, different knowledge

representation mechanisms can be used. However, there is a specific requirement for

enabling reasoning on top of this knowledge in order to identify relevant dependent

context components for preservation purposes, which will be explored in D4.3. This

makes the usage of Ontologies appropriate for capturing this knowledge, since

automated correct and complete reasoning mechanisms can be used to solve

problems that otherwise would be too complex to solve by humans.

In [Steffen S., et al., 2009], ontologies are defined: “An ontology is a formal, explicit

specification of a shared conceptualisation for a domain of interest.“ This definition

focuses on the important characteristics of an ontology and in turn is a refinement of

Gruber's definition “An ontology is a specification of a conceptualisation” [Gruber T.

1992]. An ontology specifies an abstract model of a domain of our world, also referred

to as the “domain of discourse“. The model formally defines all concepts and their

relationships which are relevant in the domain of discourse.

Depending on the scenario, the complexity of ontologies may vary. The

expressiveness of ontologies ranges from basic taxonomies to complex networks of

concepts, relationships and rules on these concepts and relationships. The focus in

TIMBUS and specifically in this Deliverable, D4.2, is to denote the information specific

TIMBUS D4.2 Dissemination Level: Restricted Page 57

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

to dependencies within the backdrop of the context model developed in D4.5. The

domain we are interested in analysing is broad and complex, a generic enterprise.

Enterprises come in many shapes and forms and as such the parameters that we wish

to investigate have to be clearly defined to try and reduce the scope and complexity

of a possible model. From the motivation in Section 2.2, the Formalism has been

designed to model the parameters in an enterprise relevant to answering the question

“What elements need to be captured in order to digitally preserve a required business

process.”

4.1 Base ontology and construction

The Formalism is a description of the syntax and rules used for describing, naming and

providing the rules that all elements that are represented by it, must adhere to.

Elements in this case refer to all the possible components that a business process

could comprise. When captured in the model, elements will be described as entities.

For TIMBUS a few representational schemes were analysed and OWL was chosen as

the representation format. The tool used for developing the Formalism is Protégé39

from Stanford University that is a well established tool for developing ontologies. OWL

provides a base-structure for the elements to be represented as entities, allowing for

the creation of entities and denoting the relationships between entities. Entities can be

further sub-divided in to classes and instances (known in Protégé as individuals).

Classes are used to describe generic types of instances. Classes can be described as

an abstraction that contain properties which all members of the class adhere to.

Deciding if an instance should be a further sub-category of an existing category or an

individual instance is decided when the generic model is designed40. Instances can

have further properties as specified by data properties (using Protégé terminology).

Relations between entities are the descriptive term used to link two or more entities.

For OWL, the modelling technique only allows for binary relations (between two

entities) and so when relations are discussed they refer to directed (order of the

description of the entities is significant), binary relations.

The generic term model is used to denote the structure that entities and relations can

have as represented by the Formalism and is an abstraction of the real world. The

base model includes all the base entities and relations that have been created for

capturing a business process. An instantiated model is a model that has been

populated with the entities that represent the elements of a real business process for

a specific scenario. Throughout the description the instantiated model will be referred

to more often as it is the object that will be used for describing the specific business

39 http://protege.stanford.edu/download/download.html
40 http://protege.stanford.edu/publications/ontology_development/ontology101-noy-

mcguinness.html

TIMBUS D4.2 Dissemination Level: Restricted Page 58

Copyright TIMBUS Consortium 2011 - 2013

http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/download/download.html

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

process scenario that has been captured and as such instantiated model will be

abbreviated to model. Where the generic model is referred to it will be labelled as the

generic model.

The main design and construction of the Formalism was carried out as work for both

Tasks T4.2 and T4.4 (capture of contextual information and metadata) in TIMBUS. The

relations between entities and the entities themselves are interlinked and so it is

difficult to separate the concerns to purely dependency or purely contextual

information. The design of the contextual parameters was developed mostly as a

result of Task T4.4 and as such there is some information that will be common to both

Deliverables. To avoid repetition of the work that is explained in that Deliverable, only

a brief discussion about the decisions taken when developing the contextual

parameters will be presented in D4.2. More detail and explanation will be provided in

terms of the relations and dependencies within Task T4.2 and this Deliverable D4.2.

As can be seen in a representational snapshot of the ontology as shown in Figure 11,

all the entities in an enterprise will be sub-elements of a root class, 'Thing'. All classes

of the ontology are derived from a generic super-class, 'Thing', through sub-classes.

The entities in the upper half of the diagram above the asserted knowledge line are

classes and sub-classes. The entities in the lower half, in the asserted knowledge

section of the diagram shown in Figure 11 are individual instances of the classes. In

TIMBUS the instances will relate to individual elements in the system and their

attributes. A subset of these instances will be selected for preservation of a specific

business process. The classes on the other hand have been developed to attempt to

group the concerns of different aspects of enterprises. These relate strongly to the

Domain Specific Languages (DSLs) referred to in the related work (Section 3), where

the languages have been defined to categorise similar instances and define specific

properties about them.

For instance one of the sub-classes has been defined to be software. This is following

the identification in many scenarios related to the TIMBUS context workshop (held in

relation to D4.5) where partner specific scenarios were developed that software is a

class that is relevant to many of the scenarios. There is however no one correct way

for deciding the hierarchy of classes and for deciding the depth of detail that a model

should capture and at what point instances should be used and is in fact one of the

limitations in using ontologies. As such the approach is to take a middle-out approach

as suggested in Uschold and Gruningers' methodology [Uschold M., et al., 1996]. For

this the middle-out approach uses a combination of top-down and bottom-up design to

help design the structure of the class hierarchy.

The top-down approach is where, using some previous understanding and experience,

the designers or knowledge workers enforce some level of categorisation, by assigning

classes and sub-classes. The bottom-up approach however uses the assignment of

TIMBUS D4.2 Dissemination Level: Restricted Page 59

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

properties and attributes to individual instances that direct the categorisation efforts.

A software reasoner attached to the model can use a combination of the definitions

assigned to classes, the data properties and object properties to decide in which

classes instances should belong. A software reasoner can also assist in determining if

there are equivalence classes, where two classes denote the same set of properties

and highlight an error or the need for more detail to be applied. Some of this

automatic categorisation might not match the intention of the developers of the model

but then using refinements in the Formalism, the classes can be redefined.

Constructing “well-structured” and “well-named” hierarchies of classes and relations,

and classifications of instances, is a complicated process. Ontology designers (also

called knowledge engineers) have a subjective perspective in modelling the

knowledge on a part of the world (their domain of interest). Their perspectives may

differ on what are the relevant parts of the domain of interest, and in their perception

on the suitable granularity of classes and relations in the hierarchy. This can easily

lead to inconsistencies where classes, instances and relations should be placed in the

hierarchies “to best model” the domain of interest. Firstly, naming conventions specify

the proper naming of classes, instances, relations and dependencies in TIMBUS.

Secondly, design pattern conventions establish best practices in modelling frequent

problems, for example, “how to represent information objects, such as a text, and its

information representations, i.e. its physical representations, such as a PDF or a

printed book” and “how to establish a new class in the hierarchy”. The naming

conventions used in the Formalism are briefly described in Section 4.2, but are

provided in more detail in Deliverable D4.5.

From the snapshot of a part of the TIMBUS Music Process in Figure 11, information

could be used that has been captured in this model. It may be used for determining if

the business process is preservable when it is first being preserved. Information

captured in the Formalism and the specific model could be used to determine if there

are any problems in exhuming the system to a new environment. For example the

software that is represented in the diagram is Taverna that requires a Java Virtual

Machine to run. It may happen that due to company policy that at the time the

business process is being exhumed and brought to a live-system that there is a

specific problem in using the licence, GPL version 2.0. In this case the business

process would need an alternative component to perform the role of the Java Virtual

Machine. The specific Java Virtual Machine instance, which is named HotSpot JVM, is a

particular Java Virtual Machine that uses that specific licence. In this case an

alternative, JikesRVM that uses the Eclipse public licence could be a suitable

alternative. If there are particular features that a Java Virtual Machine must have for it

to run the Taverna software then this would have to be encapsulated in the model and

would lead to a refinement that is more descriptive that allows for this dependency to

be captured.

TIMBUS D4.2 Dissemination Level: Restricted Page 60

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Figure 11: Representation of classes, instances and relations in the ontology

4.2 Naming conventions

In TIMBUS, each word contained in a term starts with a upper-case first letter and

continues with lower-case letters. For terms consisting of a sequence of words the

camel-caps notation is to be applied, for example: “SportsEquipment”.

With ontology formalisms like OWL, usually each ontology consists of only one global

name space. To identify an element of an ontology, the name of each element has to

be unique. Each class name, individual name and relation name has to be unique in

the Formalism in TIMBUS. To prevent naming conflicts the following guidelines have

been established for naming classes, individuals and relations:

Each class name is prefixed by “c_”, indicating that this name belongs to a class. In

TIMBUS, the fully qualified class name from the class hierarchy is used to differentiate

classes that otherwise could reside in two or more classes and to specify them. As

parent classes follow this naming convention, this is sufficient for disambiguating class

names.

Each individual name is prefixed by “i_”, indicating that this name belongs to an

individual relation, and to disambiguate it from classes and relations. Instances may

TIMBUS D4.2 Dissemination Level: Restricted Page 61

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

be named the same and are differentiated by the minimal set of descriptive relations

required to disambiguate all the individuals in the class. Syntactically, the suffix for

each relation after an individual's name is constructed by concatenating two

underscores (“__”), the relation's name (e.g. “hasVersion”), one underscores (“_”) and

the related individual's name (e.g. “V10.0”).

Each relation name is prefixed by “r_”, indicating that this name belongs to a relation,

and to disambiguate it from classes and individuals. In contrast to classes and

individuals, in TIMBUS, the first word contained in a term starts with a lower-case first

letter and continues with lower-case letters.

For sake of brevity in this Deliverable as the terms are being described the naming

convention will not be held, but in any implementation the naming conventions should

be used to avoid the problem of naming conflicts.

4.3 Formal language for modelling of dependencies

The intention was to start modelling dependencies based on a previous work carried

out for a previous project (MANCOOSI41) that described formally the dependencies

between components from a software and packaging perspective [Mancinelli F, 2006].

The Common Upgrade Description Format (CUDF42) is described in more detail in

Section 3.3.2. This description format is the basis for the work on some of the more

general dependencies descriptions in Annex (Annex A.1 - Fundamental Concepts). As

defined before dependencies are relations between entities. An example of how the

Formalism developed in TIMBUS can be applied is that of the TIMBUS Music Process

that will be described in Section 5, but is basically a representative, technical use-case

scenario that has been developed within the TIMBUS project to exercise the complete

preservation process.

An example of how the TIMBUS Music Process would be represented if captured in

CUDF is included as an Annex (Annex A.4 - Example Listing of CUDF for the TIMBUS

Music Process in Taverna). CUDF was designed for capturing the domain of software

dependencies on GNU/Linux Operating Systems. As such CUDF has limitations in that

the expressiveness of that particular description format is limited to describing the

existence of software packages on a single GNU/Linux Operating System and the

relations between those software packages if stipulated by the person that packaged

the software and the packaging software. The relations captured between packages

are normally strict constraints that help guide SAT-solvers (satisfiability) to determine

if software can be upgraded on a system as explained in Section 3.3.2. CUDF therefore

is limited in what type of information it can express and a more descriptive system

41www.mancoosi.org
42http://mancoosi.org/reports/tr3.pdf

TIMBUS D4.2 Dissemination Level: Restricted Page 62

Copyright TIMBUS Consortium 2011 - 2013

http://mancoosi.org/reports/tr3.pdf
http://www.mancoosi.org/

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

was required. This Formalism therefore was designed to attempt to capture

components of a business process and the relations between those components

requires more expressiveness to relate components that may not naturally have any

connections. Software dependencies relate packages of particular versions together

and state whether packages are needed on the same system or if they cannot be

present on the system at the same time (a conflict). CUDF however cannot express

cardinality, which means it cannot work with the countable number of entities in a

system. For example if a system requires to have four people working on it for the

process to be valid, there is no way of representing this information using CUDF

without creating an entity that is specifically 'four people'. As such the expressiveness

of CUDF is too limited for the envisaged scenarios without extending the original

language and the connected solvers.

The specific language that is used for defining the Formalism at the base level is OWL2

on RDF. This is a combination that seems to work well and is similar in many ways to

RDFS (RDF Schema). The use of OWL is an approach that is widely used in industry

and there is a large community that has developed around creating ontologies using

OWL has a number of associated tools for working on design and using the ontologies.

To maintain extensibility it is then thought that elements will be defined using DSL

terms from the related work in Section 3. As stated in the introduction in Section 2,

reasoning can be used within the ontology to determine if all the relations are met for

determining whether a business process can be preserved and that all the required

constraints have been met. The use of external solvers has not yet been ruled out for

determining sub-problems and would make the process of solving the entire problem

set simpler in that part of the problems can be solved using pre-existing tools.

However any knowledge that is not represented within the base ontology cannot be

reasoned upon, so either a translation stage would be required or there would need to

be integration performed to allow for the results to be used in a meaningful way.

4.4 Types of dependency relationships

There will be two classes of dependency relations that will be formally defined and

represented in this Formalism. One set of relations will be that of constraint relations

that are strict relations that must be met in order for the process as captured through

the model of the system, to be preserved. Constraint relations therefore will be

relations between elements that must be adhered to for the potential solution for the

specific model to be valid. Constraint relations are critical relations that the reasoner

must solve. The other set of relations is a weaker set of descriptive properties that

associate entities with attribute details otherwise known as description relations.

Given the description relations of the entities and the other instances captured in the

system and the context, other constraint relations may be inferred. Using a

combination of the constraint relations and the description relations it should be

TIMBUS D4.2 Dissemination Level: Restricted Page 63

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

possible for the software reasoning tools to solve what entities must be captured in

order for preservation to succeed, or otherwise suggest that using the current model

of the process that it is un-preservable and display the constraints leading to that

conclusion. Then using a combination of information provided by process experts

through the tools that will be generated in WP6 (Intelligent Tools and Technologies to

Support Digital Preservation of Business Processes), the constrictive relations may be

relaxed in order to make the system preservable (relaxing the constraints).

The constraint relations that will be used are captured in Table 3 and are related to

the generic constraint relations for software dependencies mentioned in Section 3.3.2,

in Table 2. The descriptive relations that will be captured are a non-exhaustive list

represented in Table 4. These relations have been captured as a result of analysing

partner specific scenarios at context workshops related to D4.5 (Business Process

Contexts) and the domain specific terms presented in the related work, Section 3.

The relationships defined are mono-transitive relationships. This means that each

subject takes a single object. There are more complicated relationships that require

two or more relations but these are not easily representable in OWL-RDF that can only

represent binary relations but can be manipulated to represent n-ary relationships43.

This is unlike UML that can have multiple arguments.

4.5 TIMBUS constraint relationships

The constraint dependencies in Table 3 are constrictive, generic dependencies that

can be used to describe relations between entities at any layer in the Enterprise. The

constraint dependencies could be incorporated into a knowledge-base or a static

resource to dependency mapping. A resource to dependency mapping would be a

model whereby each element has a constraint relationship to other elements that are

necessary and lacks the expressiveness to detail weaker relationships between

elements in a business process. The descriptive relations allow for weaker connections

to be associated between context parameters and domain that the enterprise is in, to

allow for the reasoner to calculate more connections. This is important for digital

preservation because the complex question that we are attempting to answer is if the

model that we generate of a business process is preservable. If all the relations in the

system are already denoted with constraints by humans then the solution would be to

traverse the dependency graph and check that all the required elements are in the

solution set.

43http://www.w3.org/TR/swbp-n-aryRelations/

TIMBUS D4.2 Dissemination Level: Restricted Page 64

Copyright TIMBUS Consortium 2011 - 2013

http://www.w3.org/TR/swbp-n-aryRelations/

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Table 3: TIMBUS constraint relations between entities

Name of

relationship

Example Meaning

hasRequirement Taverna-workbench

hasRequirement JavaVM

Entity1 can not exist in the system without

Entity2 existing at the same time.

hasConflict Taverna-workbench

hasConflict

JavaVM(Version==1.7)

Entity1 or Entity2 can exist on the system but

cannot exist at the same time. Entity1 and

Entity2 are mutually exclusive.

relationBefore PurchaseService pre-

depends(time)

RESTfulProvider

Entity1 requires that Entity2 be in the system

at least for time before it can exist in the same

system. Entails an ordering of dependencies.

relationSameTim

eAs

EnterpriseCrediting

same-depends

CustomerDebiting

Entity1 requires that Entity2 be activated on

the system at exactly the same time. Ordering

relationAfter NetworkConnection

post-depends(time)

NetworkThroughput

Entity1 requires that Entity2 only be in the

system at least for time after Entity1 has been

activated on the system. Ordering

4.6 TIMBUS descriptive relationships

The descriptive dependencies or attributes shown in Table 4 however are more

generic relationships that can relate entities using more natural language. The

relations are more reliant on the perspective that they are trying to describe and as

such are more applicable to reasoning methods. Expanding upon the constraint

relations and by using more intuitive natural language relations it is easier to relate

entities without having a human decide whether a relation is important or not. This

way it is easier to map real-world situations into the Formalism for reasoning as a

human does not have to decide if it is imperative that two entities be connected. It

does however make the reasoning more complicated as the relations are less

constrictive and a set of rules have to be derived that allow for the reasoning to be

domain specific to the type of enterprise and the components available in its context.

TIMBUS D4.2 Dissemination Level: Restricted Page 65

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Table 4: TIMBUS descriptive relations between entities

Name of

relationship

Example Meaning

hasAssociation Permission

hasAssociation Resource

Entity1 has a generic association with Entity2.

hasAuthorisation Person hasAuthorisation

RunSoftware

Entity1 has permissions as granted by Entity2.

hasComplement BusinessGoal

hasComplement Person

Entity1 is partly assisted to completion of associated

process by Entity2.

hasCompetency Person hasCompetency

SoftwareDevelopment

Entity1 has a skill for completing certain processes as

denoted by Entity2.

hasConfiguration JavaVM hasConfiguration

VMreqs

Entity1 is configured in a certain manner as defined by

Entity2.

hasCreator SoftwarePatent

hasCreator Person

Entity1 has been created as a result of something that

Entity2 has performed.

hasDate ServiceDataRetention

hasDate RenewalDate

Entity1 is associated with a date as specified by Entity2.

hasDeliverer Email hasDeliverer Email-

Server

Entity1 is associated with a delivery mechanism Entity2.

Can be connected with hasRecipient to denote target of

Entity1.

hasEncryption HTTPS hasEncryption

SSL/TLS

Entity1 uses an encryption scheme as defined by Entity2.

hasExecution Taverna-workbench

hasExecution

MusicClassification

Entity1 runs the process associated with Entity2.

hasExecutionEnvi

ronment

Taverna-workbench

hasExecutionEnvironmen

t JavaVM

Entity1 uses a working environment Entity2 to be

performed within.

TIMBUS D4.2 Dissemination Level: Restricted Page 66

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Name of

relationship

Example Meaning

hasExecutor ProcessPreservation

hasExecutor

PreservationAgent

The process as specified by Entity1 is performed by

Entity2.

hasFormat TextFile hasFormat

Word97

Entity1 has an arrangement as specified by Entity2.

hasGuide DataEncryption hasGuide

SAS70Compliance

Entity2 is used to guide Entity1 in how the associated

process should be executed.

hasImplementatio

n

Cache

hasImplementation FIFO-

Buffer

Entity1 may have many ways to be implemented and

Entity2 is used to specify a single implementation.

hasLicence Taverna-workbench

hasLicence LGPL_2.1

Entity1 has a licence as specified by Entity2.

hasLikeness Permission hasLikeness

Right

Entity1 is somewhat similar in function and purpose to

Entity2. Used mainly to tag that more specific relations

should be used for reasoning.

hasLimitation Windows7Starter

hasLimitation

MemoryLimitation44

Entity1 has a limitation as described in Entity2.

hasLocation Office1 hasLocation

Lisbon-PT

Entity1 is located in a situation as specified by Entity2.

hasMilestone Project hasMarker

Milestone6

Entity1 has a distinctive point in its life-cycle denoted by

Entity2.

hasModifier OutputData hasModifier

Software

Entity1 is modified in some way by Entity2. How it is

modified depends on the process.

hasName OS1 hasName Ubuntu- Entity1 is named by a string. This is the name that is used

44http://msdn.microsoft.com/en-us/library/windows/desktop/aa366778%28v=vs.85%29.aspx

TIMBUS D4.2 Dissemination Level: Restricted Page 67

Copyright TIMBUS Consortium 2011 - 2013

http://msdn.microsoft.com/en-us/library/windows/desktop/aa366778(v=vs.85).aspx

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Name of

relationship

Example Meaning

Linux for querying rather than the name of the entity itself.

hasObjective Division1 hasObjective

CompleteProject

Entity1 has a high-level business goal as specified by

Entity2.

hasObligation Doctor hasObligation

DutyOfCare

Entity1 has a duty to complete its actions under the

boundaries of Entity2. It differs to rules in that obligations

are dependent on societal environment.

hasOwner Taverna-workbench

hasOwner Person

Entity1 is owned in terms of property by Entity2.

hasPart Enterprise hasPart

Department

Entity1 comprises a component Entity2. Used to break

down large components into smaller units without being

the isA relationship. For example a phone hasPart

antenna but an antenna is not a phone in itself.

hasPermission Pilot hasPermission

FlyPlane

Entity1 has a set of permissions as granted by Entity2.

hasProvider(weig

hting)

BusinessDocumentatio

n

hasProvider(weighting

) Timesheet

Entity2 provides a functionality and a weighting of

as to how good a solution it might be for meeting

the needs of Entity1.

hasRecipient Email hasRecipient

Person

Entity1 has a target Entity2 for a process.

hasRecommen

dation(weightin

g)

BusinessProcess

recommends

BusinessDocumentatio

n

Entity1 recommends Entity2 and suggests a

weighting of as to how important it might be.

There is no strong requirement that Entity2 be on

the system. However if possible the solution set

will try to include Entity2.

hasRedundancy ServerFarm1

hasRedundancy

The process performed by Entity1 can be performed by

Entity2.

TIMBUS D4.2 Dissemination Level: Restricted Page 68

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Name of

relationship

Example Meaning

ServerFarm2

hasResponsible Department

hasResponsible Manager

Used to differentiate between hasOwner. All processes

underlying Entity1 are under the responsibility of Entity2

unless a lower element is defined to have a different

Entity responsible.

hasRole Person1 hasRole

Manager

Entity1 is specified a role within the Enterprise as

specified by Entity2.

hasRule Actor hasRule ActorRule Entity2 specifies a set of rules that Entity1 has to comply

to.

hasSnapshot VM-1 hasSnapshot

Snapshot-2

Entity1 is captured in its current state by Entity2.

hasSpecification ARFF hasSpecification

http://www.cs.waikato.ac.

nz/ml/weka/arff.html

Entity1 is defined through documentation or a more

formal schema that can be interpreted by a computer.

hasState CPU1 hasState S3 Entity1 is described as having a state as defined by

Entity2.

hasSupporter Manager hasSupporter

Assistant

Entity1 is supported for completing one or more

processes it is involved with by Entity2.

hasThroughput Server1 hasThroughput

NetworkThroughput

Entity1 has a quantifiable output as specified by Entity2.

hasVendor Computer1 hasVendor

HP

Entity1 is sold by Entity2.

hasVersion JavaVM hasVersion 20.0-

b11

Entity1 has a version as specified by the value.

isA OperatingSystem isA Categorisation. Means that Entity2 is everything

that Entity1 is, but may be more fully specified or

TIMBUS D4.2 Dissemination Level: Restricted Page 69

Copyright TIMBUS Consortium 2011 - 2013

http://www.cs.waikato.ac.nz/ml/weka/arff.html
http://www.cs.waikato.ac.nz/ml/weka/arff.html

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Name of

relationship

Example Meaning

Software have properties that make it less generic.

Figures 12 and 13 show how for the context parameters derived in D4.5, relations can

be used to connect the various entities. Given n context parameters, if each

parameter can have a single relation with another parameter the number of relations

would be O(n2). From the context parameters there is not always a single relation that

maps two parameters together, neither does it always make sense to have a

connection between two unrelated parameters. As such the relations that have been

derived from the existing context parameters are a non-exhaustive set that will be

refined in the subsequent Deliverable, D4.3.

Figure 12: Demonstrative set of relations between context parameters in

infrastructure layer

TIMBUS D4.2 Dissemination Level: Restricted Page 70

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Figure 13: Demonstrative set of relations between context parameters in

technology layer

4.7 Formal semantics for constraint relations

In this section we discuss the implementation of the constraint dependencies in

Protégé. To do this the terms that are used are first discussed and then in Table 5 the

data characteristics are presented. An Annex (Annex A.6 – Listing of OWL-RDF

properties of constraint relations) also includes a listing of how these relations are

implemented in OWL-RDF.

 Functional. Means that the relation can only hold between two entities. It could

not then be further applied from one of the entities to another.

 Inverse Functional. Generally not used as it makes the ontology non OWL-DL

compliant.

 Transitive. A relation that is transitive means that if a relation holds between

two elements and a third related element is introduced that the relation will

TIMBUS D4.2 Dissemination Level: Restricted Page 71

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

hold. If A is an ancestor of B and B is an ancestor of C, then as a transitive

relation, A is also an ancestor of C.

 Symmetric. This means that a relation is true in both directions for a pair of

elements.

 Asymmetric. A relation that exists between a pair of elements cannot be applied

in the inverse direction.

 Reflexive. For properties that are reflexive, the relation can be applied to the

element itself.

 Irreflexive. An element that has an irreflexive relation means that it cannot have

the relation applied to itself.

The domain and range for all these relations is the entire scope of the problem set.

Table 5: TIMBUS constraint relations between entities

Relation Functional Inverse

Functional

Transitive Symmetric Asymmetric Reflexive Irreflexive

Conflict X X

Provide X X

Recommend X

Require X

Before

SameTime

After

4.8 Versioning and location of the Formalism

The work presented in this deliverable concerning the Formalism will be followed-up in

Deliverable 4.3, which is due in month 24 of the project. The follow-up will be a

TIMBUS D4.2 Dissemination Level: Restricted Page 72

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

refinement of the Formalism presented in this deliverable and will deal with its

application to the Industrial Scenarios being explored in WP7, WP8 and WP9.

Additionally, the Context Model and the Context Model Instances are to be named,

versioned and published (project internally) in a consistent manner. The following

serves as the initial version:

http://www.timbusproject.net/ontologies/2012/04/ContextModel.owl

The Context Model is published on the project website, using the above URL as a way

of downloading the Context Model. A revision to this version of the Context Model will

be provided at the end of the release of the next, Deliverable D4.3.

TIMBUS D4.2 Dissemination Level: Restricted Page 73

Copyright TIMBUS Consortium 2011 - 2013

http://www.timbusproject.net/ontologies/2012/04/ContextModel.owl

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

5 Application of Formalism to a use-case

In this section we describe how the Formalism can be applied to a specific use-case.

This allows for some of the practical benefits of the Formalism to be demonstrated. It

also forms the basis for how the more complete use-cases that are being specified as

part of the work of Workpackages WP7, WP8 and WP9, could be represented by the

Formalism. By testing on a complete but simple, technology use-case we can

investigate some of the conditions that will be checked for and start to test the

coverage of the current version of the Formalism. We first outline the process that we

will be applying to the Formalism, providing details of how the workflow is constructed

and then we will discuss how the relationships can be captured between the various

components of the system and suggest how we might positively benefit from the

modelling of this process.

The following applied example is on TIMBUS' Music Process. It is an example that is

more focused on the technical aspects of TIMBUS and is an open-source process

throughout. It uses a process flow engine that is open-source, Taverna, and all the

components that are relied for the correct execution of the process are all open-source

too. This has the benefit that there are no license or other restrictions from stopping

the partners from describing and using the process.

Taverna is an open source and domain-independent workflow management system

and is used for designing and executing scientific workflows. It allows for many small,

well-defined tools or scripts be joined together in a pipeline to be able to reproduce

the problem execution in a controlled environment. Data flow between services are

specified without so much emphasis on how the services are executed. Taverna allows

the TIMBUS Music Process to be specified as a set of connected processes and flows of

data originating from specified inputs through to the expected outputs.

The example process is assigning meta-data to items in a specific dataset, such as a

classification label to a music collection present in digital audio formats. This process

is chosen for several reasons. First, it is similar in its nature to the eScience setting in

Work Package WP7. Further, the process is interesting as it involves several different,

partly remotely located services and tools. Finally, we have access to all relevant parts

of the process components, and it has been created by one of the partners within the

TIMBUS Project and so is a pre-existing work.

When performing automatic genre classification of a music collection, a process

typically consists of (some of) the following steps:

TIMBUS D4.2 Dissemination Level: Restricted Page 74

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

 Acquiring a set of training and test data, potentially from remote content

providers, such as Amazon.com, 7digital, etc. Those might provide a web

service or another specific protocol to acquire the data.

 Further, meta-data such as a genre label might be acquired from the same or a

different data source (such as the All Music guide45, Gracenote46, or

MusicBrainz47. This assigned might be user generated data (e.g. via tagging),

and thus change over time (e.g. from alternative rock to a later-emerging sub-

genre of grunge)

 Pre-processing of the input data, e.g. format conversion from MP3 to raw audio,

selection of relevant parts of the data (middle segments in music, specific

paragraphs of a text, etc.)

 Extraction of representative, numerical features from the input data. There is a

plethora of remote services emerging, e.g. echonest.com. Tools for extraction

might also be used offline on the same machine, but might come in different

languages (C++, Java, Matlab), depending on different third-party libraries.

Remote services might change frequently, and extract new types of

representations, or extract existing representations in a different way, thus

providing different numerical values that might significantly change the

outcome.

Local implementations might utilise some of the computation algorithms

provided with the specific language, such as the Fourier transform by Matlab.

These might differ over different languages.

 Storing of the features in some way (text, database) and format (e.g. WEKA

ARFF)

 Using a machine learning toolkit to train a model and assign new meta-data

(genre labels) to unknown data. Different versions might provide different

implementations of algorithms, and can thus lead to different results.

This process is illustrated below in Figure 14:

45http://www.allmusic.com/
46http://www.gracenote.com/
47http://musicbrainz.org/

TIMBUS D4.2 Dissemination Level: Restricted Page 75

Copyright TIMBUS Consortium 2011 - 2013

http://musicbrainz.org/
http://www.gracenote.com/
http://www.allmusic.com/

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Figure 14: Dependency extraction can be used for determining boundaries of

systems and Enterprise Processes

A specific instance of this process has also been modelled in the Taverna Workflow

engine (http://www.taverna.org.uk/). A screenshot of the workflow can be seen in

Figure 15. In the screenshot the workflow engine specific scripts are marked with 'Ws';

scripts based on predefined operations are marked with 'Ps', such as Base64

encoding.

Static input data is marked as 'Ip', while the process outputs are marked with 'Op'. The

RESTful service is marked with 'RS'.

TIMBUS D4.2 Dissemination Level: Restricted Page 76

Copyright TIMBUS Consortium 2011 - 2013

http://www.taverna.org.uk/

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Figure 15: TIMBUS Music Process workflow in Taverna

Modelling the process in such an engine as it is based on Java has a side-effect of it

becoming platform independent. First, steps that might normally be performed by

shell scripts are replaced by a specific script-language known to Taverna. Also, all

software components that are used have to be understood by the workflow engine,

which thus becomes a layer of abstraction from the underlying operating system.

In detail, this process consists of and depends on the following software libraries or

systems

TIMBUS D4.2 Dissemination Level: Restricted Page 77

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

 WEKA machine learning toolkit, version 3.6.6; employed for the learning of a

predictive model and assigning of labels to unknown data

 Java SOMToolbox, version 0.7.5.1; used for format conversions

 Taverna Workflow Engine, version 2.3.0; used to execute beanshell scripts and

provide the process workflow

◦ Taverna requires Graphviz for rendering the workflow chain

 Java Development Kit / Java Runtime Environment version 6.0; use as runtime

environment for Taverna Workflow Engineering

 Ubuntu Linux version 11.04; used as platform to run the JDK / JRE

 AudioFeatureExtraction REST Service, running at

http://kronos.ifs.tuwien.ac.at:8080/fex/featureExtractionREST; provides the

extraction of numerical features from MP3

◦ CGI parameters:

▪ voucher={authentication voucher}

▪ music={mp3 file Base64 encoded}

◦ Return value: Vector in SOMLib format

 MP3 Data provider Service; provides the audio files. For demonstration

purposes, this is a simple Apache (version 2.2.0) directory listing, accessible at

http://kronos.ifs.tuwien.ac.at/timbus/musicProcess/music/

 Genre assignment (groundtruth) provider; provides the assignment of the audio

files to a specific genre. For demonstration purposes, modelled as a simple

HTTP service, available at

http://kronos.ifs.tuwien.ac.at/timbus/musicProcess/genres.txt, in SOMLib format

A screenshot of the dependencies graph of the TIMBUS Music Process that has been

captured into the Formalism can be seen in Figure 16. This graph is produced from a

Java graph visualisation tool called JUNG48. It gives more flexibility that the built in

visualisation tool included with Protégé known as OntoGraf49. From this visualisation

tool the relations that have been encoded between entities can be seen. Not all the

relations have been encoded as this is the first version of the ontology and needs

refinement based on the queries that will be developed as part of the subsequent

deliverable. Some of the entities (including Ubuntu Oneric, ClassificationAccuracyGoal

and MusicClassification) therefore are currently unconnected from the rest of the

system and one of the aims of the iterative development of the Formalism is to

48http://jung.sourceforge.net/
49http://protegewiki.stanford.edu/wiki/OntoGraf

TIMBUS D4.2 Dissemination Level: Restricted Page 78

Copyright TIMBUS Consortium 2011 - 2013

http://protegewiki.stanford.edu/wiki/OntoGraf
http://jung.sourceforge.net/
http://kronos.ifs.tuwien.ac.at/timbus/musicProcess/genres.txt
http://kronos.ifs.tuwien.ac.at/timbus/musicProcess/music/
http://kronos.ifs.tuwien.ac.at:8080/fex/featureExtractionREST

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

capture relations that describe the connections between all the elements that are

necessary for digital preservation of a business process to succeed.

A graph of the packaging software dependencies that highlight the required packages

in the system can be seen in Figure 17. These software package dependencies are

captured using CUDF that was discussed in Section 3.3.2. The software package

dependencies shown in the figure have been extracted from the system using the

package management software 'APT50' and captured in CUDF. To visualise the

dependencies the software 'debtree51' was then used. This shows the dependencies

based on a Linux, Caixa Mágica 16 system that has a common basis of an Ubuntu

10.04 system. The limitations of software dependencies on their own is quite visible

based on the tools that were used to capture this information. CUDF is limited is to

describing software that is packaged, or contained in scripts. CUDF therefore cannot

describe components such as software services, documentation, business process

description to name just a few. To start with though, most software components on a

GNU/Linux type system are captured as packages including system libraries and most

commonly used applications. Most users will normally use software that is contained in

packages but to aim for more complete coverage we have to be able to represent

more generic software and also cover non GNU/Linux systems. In the scope of

Workpackage WP6, TIMBUS will investigate and evaluate other tools for assisting users

with extracting information and semi or fully automatically capturing instances and

relationships as present in the live enterprise.

What can be seen is that some of the fundamental concepts of software service

dependencies in Annex (Annex A.1 - Fundamental Concepts) from Linux software

packaging systems have been modelled into the ontology and as such can be

captured and represent information that is useful for determining if the model of the

business process is complete enough for digital preservation. The CUDF representation

is fairly limited in what it can describe and so the graph that can be seen in Figure 16

is able to represent a larger number of relations.

With the model that has been generated as joint work from Tasks T4.2 and T4.4, the

TIMBUS Music Process has been converted into a representation that is consistent with

the ontology. This captured version is being used to guide the tool development in

WP6 and the work has also been carried out similarly for two other use-cases

described in the scope of Task T4.4.

50http://packages.debian.org/squeeze/apt
51http://collab-maint.alioth.debian.org/debtree/

TIMBUS D4.2 Dissemination Level: Restricted Page 79

Copyright TIMBUS Consortium 2011 - 2013

http://collab-maint.alioth.debian.org/debtree/
http://packages.debian.org/squeeze/apt

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Figure 16: TIMBUS Music Process workflow as captured by JUNG

TIMBUS D4.2 Dissemination Level: Restricted Page 80

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Figure 17: TIMBUS Music Process workflow software dependencies

TIMBUS D4.2 Dissemination Level: Restricted Page 81

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

6 Conclusion and Outlook

The TIMBUS project aims to enable the successful preservation of business processes,

whose semantics are largely dependent on the context where the process was created

and executed, requiring a particular environment in order to be understandable or

rendered. This deliverable aims to contribute to that objective through the modelling

of all the possible dependencies existing between digital objects that are part of a

process or which the process depends upon, so that processes can be successfully

exhumed and re-enacted.

In this deliverable a first version of an ontology for the modelling of the dependencies

of business processes was proposed, which should be used in the remainder of the

TIMBUS Project. The deliverable focused on investigating and reporting the related

work in terms of descriptive terms that are used within different layers of an

enterprise. This meant investigating areas that are not normally related and

investigating possible representation formats for the context and dependency

relations.

For representing the problem domain, pre-existing work was investigated for

describing the relations and elements. However, the expressiveness of the surveyed

specifications was deemed to be too limited or insufficient for describing elements in a

business process for the scenarios that were investigated in conjunction with

Deliverable D4.5. Moreover, extending the related work would sometimes involve

creating new mechanisms which would create significant overhead, leading

sometimes to almost complete reworking of the surveyed frameworks (e.g.,

extending CUDF would have led to creating new inference mechanisms and requiring

that all the pre-existing solvers be modified to investigate the scenarios in TIMBUS).

As the scope of the scenarios is likely to broaden to include new relations and context

parameters, a more expressive system for capturing and representing the elements of

TIMBUS was suggested. It was suggested that developing an ontology would be a

plausible way for answering the question posed in the problem statement, in Section

2.2, “What elements need to be captured in order to digitally preserve a required

business process”.

It is assumed that the process for the generation of the context parameter and

dependency models will be semi-automatic and as such it should be possible to

capture the relations using natural language. Thus, the use of an ontology as the

selected modelling technique should make it easier for model implementers to work

with and therefore promote the usage of the Formalism. Modelling approaches such as

TOGAF (Section 3.1.1) and Archimate (Section 3.2.1) to some extent capture similar

TIMBUS D4.2 Dissemination Level: Restricted Page 82

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

information but have a significant learning curve that make their use limited to skilled

practitioners and require a large amount of overhead before any useful answers would

be forthcoming. As such, the proposed approach which should be more intuitive and

stripped down than full Enterprise Architecture methodologies was the proposed

outcome of this deliverable.

OWL-RDF was investigated and adopted as the base-language for capturing the

elements and their relations. Based on the scenarios investigated in the Context

workshop and the expected relations required, using background knowledge from

CUDF and DUDF, a first version of the ontology has been proposed. Two classes of

dependency relations were derived from this work: constraint relations, which are

strict relations that must be met in order in order to effectively preserve a process;

and description relations, which associate entities with attribute details. The relations

therefore were designed to be sufficiently expressive to capture the connections

between entities whilst also being more intuitive for a human to model. From the

investigation carried out in this deliverable it has been found that certain parameters

and relations are explicit and thus easier to capture and store in the ontology, whilst

other dependencies are not explicit and/or indirect and will be more complicated to

represent.

This Formalism has been used to capture the TIMBUS Music Process and as such it has

enough expressiveness to capture the properties of a technical system. This was the

intention for the first deliverable that has a focus of looking at software dependencies

and services.

6.1 Future work and D4.3 roadmap

Within Task 4.2 there is a second Deliverable, D4.3 that will allow for a set of

refinements over the first iteration proposed in this Deliverable. In D4.3 the focus will

be on taking the current version of the ontology, refining and extend it, and applying it

to the use cases of WP7, WP8, and WP9, via tools being developed in Work Package

WP 6. The limitations of the current model will also be assessed in the application of

the ontology to the referred use cases.

A large part of the work will be on developing queries and rules for the reasoner such

that it can work on a business process and based on the context parameters,

determine the most relevant relations in the system, so that relevant context is

captured and the process is successfully preserved. For certain types of business

processes it is envisaged that certain contextual parameters will have more emphasis

and as such the descriptive relations will be much more important for the reasoning.

Populating the Formalism with terms sufficient for representing the different aspects

of an enterprise as identified in the related work in Section 3 will be an important step

TIMBUS D4.2 Dissemination Level: Restricted Page 83

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

for allowing the modelling of enterprises to be carried out semi-automatically. The

mapping of elements in the various domain specific languages to the Formalism will

allow for pre-existing tools that can extract specific information from enterprises to be

entered into the overall TIMBUS architecture and populate the Formalism. Once in the

Formalism, the various parts of the enterprise will have a representation that can then

be reasoned upon and certain queries asked of the model. The model refinement that

will broaden the scope of the context parameters and dependencies to encompass

organisational and business components, as well as the level of detail of the

components that can be incorporated into the problem set. Our approach for gathering

dependencies is independent of emulation approaches however emulation

environments provide a set of context parameters and dependency relations that will

need to be captured. Most of the information presented by an emulated environment

should resemble that of a real system and so the techniques that apply for real

systems should be applicable to emulated systems but this will be confirmed in D4.3.

Handling hardware dependencies as well as some of the other concepts identified in

the related work in Section 3, guided by being able to represent the scenarios

identified in the context workshop of Task T4.4 as well as the use-case scenarios that

are being developed in Work Packages WP7, 8 and 9 will also be one of the main focus

points for Deliverable D4.3.

Additionally, the work that has been started in this deliverable will also be used as the

basis for the practical implementations, D6.2 and D6.5.

TIMBUS D4.2 Dissemination Level: Restricted Page 84

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Annex

Annex A.1 - Fundamental Concepts

In this appendix we will detail the parameters that are important for this task and

define what is meant by them in this Deliverable. The definitions will also serve as a

basis for other Deliverables and as such will be maintained on the TIMBUS glossary

webpage52.

Concept of Architecture

According to the [IEEE 1471:2000] Standard, architecture can be defined as “the

fundamental organisation of a system, embodied in its components, their relationships

to each other and the environment, and the principles governing its design and

evolution”. In other words, an architecture has to depict the components of a system

and their (internal and external) relationships, along with a way for governing their

evolution. In this sense, it can be observed that architecture could be used as a tool

for capturing components of a system and their dependency relationships with each

other and with the business environment. Since the task of capturing all the

components of a system can be cumbersome, the idea of using viewpoints as a means

of dividing a big problem into smaller ones that are less complex to solve is a common

practice in architecture development. A viewpoint is itself a magnification of a part of

tan architecture from the perspective of a stakeholder of a system, resulting in a

subset of the system components and relationships that answer his concerns.

Enterprise Architecture

Enterprise Architecture can be seen as a way of “modelling the role of information

systems and technology on the organisation, aligning the enterprise-wide concepts,

aligning the business processes and information with the information systems,

planning for change, and providing self-awareness to the organisation“ [Sousa P., et

al., 2006]. The concept of Enterprise Architecture is similar to that of Architecture, but

with a larger focus, which encompasses organisations and their information systems,

and consequently has to address a larger number of internal and external

stakeholders. In that sense, it aims to present a holistic view of the organisation, of

the components that compose it, and their (internal and external) relationships, which

is not confined to business, but also encloses technology and systems.

52http://timbus.teco.edu/projects/glossary/wiki – TIMBUS Glossary page

TIMBUS D4.2 Dissemination Level: Restricted Page 85

Copyright TIMBUS Consortium 2011 - 2013

http://timbus.teco.edu/projects/glossary/wiki

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Business Process Modelling

Business processes are the core of the information to preserve and the glue between

the information artefacts. A business process is an ordered set of activities needed to

fulfil a business goal. It also includes artefacts as input and output of activities and

roles for doing activities [Aguilar-Savén R., 2004].

A process can be defined as the “relationships between inputs and outputs, where

inputs are transformed into outputs using a series of activities, which add value to the

inputs” [Sousa P., et al., 2006]. On the other hand, a business process has a larger

scope than that of a process, since it is an ordered set of activities needed to fulfill a

business goal, including the input and output artefacts of activities and roles for doing

activities. In that sense, the importance of modelling business processes comes from

the fact that the more well known is a business process, more manageable and

improvable it becomes. Several techniques for the modelling of business processes

exist, such as flow charts, IDEF (Integration Definition), UML sequence/activity

diagrams, BPMN, among others.

The Concept of Service

A service at the base level is a set of operations performed by an entity at the request

of another entity that takes a set of inputs, is influenced by a set of environmental

conditions (e.g. SLAs, for example on timing), also called contexts of the service, and

produces an output in a format that is well defined. For a service to function correctly

it is important that a service has a well established interface between the entities.

Depending on the context of service the complete functional specification of the

service may be known as the protocol, contract or through other terms.

Generic Services

There are many types of service that are applicable to an Enterprise Architecture.

Each depends on the domain to which they are being applied. For this Deliverable the

focus will be on services in relation to software. The second deliverable associated

with this task will look at relating business services with software services. Using a

relation between business services and the underlying technology layer in terms of

software, we will investigate linking business and software services.

Services in Business/Enterprises

A Business service can be defined as a subset of a service that takes into

consideration business requirements. A Business service is a set of business

operations performed by a business/enterprise at the request of another through a

formal interface. The main difference between a software and a business service is

that a business service interface tends to be controlled and governed by an

TIMBUS D4.2 Dissemination Level: Restricted Page 86

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

organisation, whereas for a software service the interface is normally common and

standardised outside of the domain of either the client or the server.

In The Open Group Architecture Framework (TOGAF) Business and IT services are

distinguished;

 Business service: Supports business capabilities through an explicitly defined

interface and is explicitly governed by an organisation.

 Information System Service: The automated elements of a business service. An

information system service may deliver or support part or all of one or more

business services.

Services in Software Engineering

In Software Engineering a service can be started by a user, process or application and

has certain access conditionality associated. Once activated, other clients can use

access credentials use the software service to perform an operation. Depending on the

set of other users running and how the service is designed, an output will be produced

and returned via a known set of output channel(s) to the client.

An example: A web-server, Apache that is run by user apache on a Linux System can

then be accessed via other users locally or remotely depending on the configuration,

normally through port 80 to view HTML pages through the established protocol of

HTTP (Hyper-text transfer protocol). The input to the service is a URL (Uniform

Resource Locator) request that the service will then process and produce an output

compliant with HTTP, allowing the user to see a webpage.

Dependencies

Dependencies in general are a descriptive term for relationships between two entities.

If entities are represented as nodes in a graph, then dependencies are the edges

between these nodes. The type of relationship as denoted by the edge is determined

by what the graph is representing though. There may be many similar types of

relationships that can be linked in this way. In general:

Entity_1 Relationship Entity_2

Where Entity1 and Entity2 are two different entities or different specific instantiations

of entities and Relationship denotes the type of relationship the entities have on each

other. The order is important because the relationships can be directed.

TIMBUS D4.2 Dissemination Level: Restricted Page 87

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

The definition of a dependency is actually more specific than the general entity

relationships and it denotes a requirement that one entity must be present at the

same time as the other. An entity that is dependent on another is known as the

dependent and the entity to which it refers can be called the dependee.

The list of relationships in Table 6, demonstrates a series of types of relationships that

may exist between entities. These are derived from the work carried out in the

development of Linux Software dependencies but when abstracted can be applied to

most other relationship types between entities.

Table 6: Relationships between entities

Name of

relationship

Example Meaning

depends/requires Entity1 depends

Entity2

Entity1 can not exist in the system without Entity2

existing at the same time.

conflicts Entity1 conflicts

Entity2

Entity1 or Entity2 can exist on the system but

cannot exist at the same time. Entity1 and Entity2

are mutually exclusive.

recommends/sugges

ts

Entity1

recommends(wei

ghting) Entity2

Entity1 does not require Entity2 to be in system,

to exist but provides a suggestion as to how

important it might be, depending on the value of

weighting.

pre-depends Entity1 pre-

depends(time)

Entity2

Entity1 requires that Entity2 be in the system at

least for time before it can exist in the same

system. Entails an ordering of dependencies.

At a business level, the management of the dependencies of a business process is a

critical aspect in the business/IT alignment effort. Processes contain implicit and

explicit intra- and inter-relationships with other components which in fact are

recognised and modelled by the majority of business modelling languages. Despite not

being labelled as such, it can be observed that several relationships between those

components are in fact dependencies, e.g., the realisation of an activity in a business

process by a software component (i.e., cross-layer dependency). On the other hand,

these general purpose modelling languages do not classify dependencies, which

brings problems when trying to enforce traceability in the architecture.

TIMBUS D4.2 Dissemination Level: Restricted Page 88

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Safoora et al. [Safoora, K., et al., 2008] partly resolve this problem by defining

seven types of dependencies between requirements and the architecture:

 Goal Dependency: Relates the system quality attributes at problem domain to

their realisation in the architecture and implementation;

 Service Dependency: Relates requirements and the operations and functions of

the architecture;

 Conditional Dependency: Relates conditions, constraints, and decisions taken at

the requirements levels to the architecture;

 Temporal Dependency: Relates requirements specifying the time frame of an

event to occur, processes to complete, etc., to their realisation in the

architecture;

 Task Dependency: Relates requirements specifying the connection between

tasks (response, input, feedback, etc.);

 Infrastructure Dependency: Relates the technical/realisation requirements to

their specific realisation in the architecture (resources, infrastructure,

standards, etc.)

 Usability Dependency: Relates requirements concerning user interaction with

the realisation at the architecture level and implementation.

Software Dependencies

The definition of dependencies in software engineering has two meanings. One refers

to the taxonomy of a set of relations between components. A second definition is

when a component is required by another and as such is dependent on that other

component.

The generic term 'dependencies' is used to describe relationships between

components because normally it is the most common relationship held between

entities.

Normally when dependencies are discussed in this document in general they include

the set of relations but if the word is used in relation between two or more

components then it will mean that one of the software components is required by the

other.

Package relationships or dependencies as defined above can include the following

relations when applied to software packages:

 depends - pkg A depends pkg B: if pkg A to be installed, pkg B must be installed

on system.

TIMBUS D4.2 Dissemination Level: Restricted Page 89

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

 recommends - pkg A requires pkg B: if pkg A to be installed, pkg B should be

installed on system.

 suggests - pkg A suggests pkg B: if pkg A to be installed, pkg B could be

installed. Weaker than recommends.

 enhances - pkg B enhances pkg A: pkg B could be installed with pkg A. Weak

preference.

 conflicts - pkg A conflicts pkg B: if pkg A to be installed, pkg B cannot exist on

system.

 provides - pkg B provides “service” and pkg A depends on “service”. If pkg A is

to be installed then pkg B or some other package must be installed to provide

“service”.

Source: Debian Dependencies53

Software Dependencies are a way of using the concept of reusable components on a

system. Components can call other components and are designed to be called in a

well established manner. By having an API (Application Programming Interface), one

piece of software can interact and use the result of another. Component based

systems such as Linux rely on this for allowing software to be generated by multiple

developers across the world to use standard features required by software to be used

by multiple software applications, without having to redevelop all the original work. A

dependency is an encoding that can be added to software, most normally in Linux

through Packaging meta-data, which allow for applications to rely on functions and

definitions that are defined in other pieces of software, without having to directly

include them. By using package dependencies, the system can quickly check to see if

software will be supported given a configuration of software on a system. This is

handled by a package manager that captures the relations between software

packages.

For the purpose of describing software dependencies an Operating System created by

the developer Microsoft and generally named in the format Microsoft Windows X

(where X may be non-exhaustively, 95, 98, ME, SE, 2000, XP, Vista, 7) will be

shortened to Windows. Also given that most users in an Enterprise or Consumer

environment use more modern versions of Windows, it will be assumed unless stated

otherwise that Windows refers to one of the operating systems based on New

Technology (NT). If the differentiation of a particular Operating System type is

required then 'Server' or similar will be appended and if a part requires a particular

version (Home/Ultimate/Corporate etc.) then this will also be stated.

53http://www.debian.org/doc/debian-policy/ch-relationships.html

TIMBUS D4.2 Dissemination Level: Restricted Page 90

Copyright TIMBUS Consortium 2011 - 2013

http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html
http://www.debian.org/doc/debian-policy/ch-relationships.html

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

For describing the software dependencies of an Operating System created by the

developer Apple and generally have the name System 1-7 or Mac OS 8-X, will be

shortened to Mac OS. Most usage of Mac OS revolves around the use of Mac OS X. If a

particular version such as 'System 6.0.8' or 'Tiger' is required then it will be stated

explicitly.

Hardware Dependencies

The computer industry strives to minimise hardware dependencies through the

adoption of common architectures and standards. In the earliest days of computing,

moving a software package from one platform to another would certainly require code

modifications before being recompiled and tested. The development and adoption of,

for example, the x86 processor architecture, has provided a platform upon which

software vendors can build reliable, predictable and affordable operating system

environments. The wide range of capabilities offered by these systems has arguably

been a strong driver of the success of the personal PC and all that has come after that.

Today, the effect of hardware dependencies is reduced, but it has not disappeared.

For the casual IT consumer, it may be barely noticeable as they migrate between

commonly available software packages on current generation operating system

platforms without paying much attention the dependencies that those packages may

have on the underlying hardware. For software developers, especially anyone with

heavy compute needs, graphic processing, or niche requirements, hardware

capabilities can make a significant difference to the performance of the application

and hence the end-user experience. Over time though, every IT user becomes aware

of the effects of hardware dependencies as it becomes impossible to execute previous

generation operating systems and their software stacks on current hardware. This

effect is lessened for virtualised computer systems, but it still does not go away as

even a virtual machine presents a set of emulated hardware to the operating system.

A possible solution to this is to increase the array of legacy emulated hardware

available within hypervisors over time.

In the context of digital preservation, and specifically in the approach of the TIMBUS

project, the identification of hardware dependencies is a crucial component in

understanding some of the major inhibitors to exhuming archived execution

environments on emulated or virtual infrastructures. Even when considerable care has

been taken to address these in the past in recent examples such as the Digital

TIMBUS D4.2 Dissemination Level: Restricted Page 91

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Domesday Book54, within a very short timeframe, the hardware required to read and

interpret the data has become obsolete. The problem is two-fold:

1. Media access:

Arguably the modern IT industry has its roots in the late 1960’s when the foundation

for the widespread adoption of personal computers was laid. Within that time, lets

consider some of the types of media and transport/storage technologies that have

been created. How many of these can still be commonly accessed today by readily

available computer technologies: Tapes, floppy disks, CDs, DVDs,

USB/Firewire/Lightpeak, SCSI/SAS/SATA/SSD, ethernet/FDDI, IPv4/v6, PCMCIA,

SRAM/DRAM, the list goes on. How many do we think will be accessible in 10 years

time. Certainly within 20 years time all these can be expected to be superseded. The

first issue with hardware dependencies is literally the problem of the technologies

upon which we rely for the storage and transportation of data.

Over time media will deteriorate even in a proper climate controlled environment. Intel

has seen cases where just the breeze caused by walking past backup tapes caused

some of the plastic hooks on reel to reel tapes to break which brought the tapes

crashing to the floor. It is therefore clear that not only does the actual tape

deteriorate, but the container in which the tape is housed becomes brittle over time.

The same can be said of other forms of media. Tapes from the late 1980s were not as

brittle as those from the 1970s, so it would imply that the plastic housing of existing

media has a roughly 30 year lifespan and it should be remembered that is based on

the assumption of correct climate controlled storage.

2. System Architectures:

Every operating system is developed to run on specific sets of hardware at a certain

point in time. Most operating systems today specify a hardware compatibility list

(HCL). The HCL simply lists the hardware components for which drivers have been

developed allowing that operating system to run on that hardware. Operating system

versions advance in lock-step with hardware advancements creating an unseen, and

very short time-window within which these layers can be expected to reliably operate.

This issue also effects software running within the operating system which may have

dependencies on specific hardware features and capabilities. This not only applies to

classic server and PC systems, but it applies equally to new form factors such as smart

phones and tablets as well network switches and sensors which are all important parts

of todays business processes. If the past has shown us anything it is that evolution of

hardware is accelerating and there is no reason to think that the business processes of

the future will not include an even wider array of future devices.

54http://www.atsf.co.uk/dottext/domesday.html

TIMBUS D4.2 Dissemination Level: Restricted Page 92

Copyright TIMBUS Consortium 2011 - 2013

http://www.atsf.co.uk/dottext/domesday.html

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

To ensure the best chance of success against both of these issues, hardware

dependencies must be understood and addressed at the time that the archival

information objects are created. This is the best opportunity in the entire archival

process to allow for future exhumation by understanding these dependencies and

making allowances for their support at a time when the ability to do something about

it is still possible. The development and adoption of virtualisation technologies has

provided a layer which can abstract running software from the specific underlying

hardware through the provision of a set of emulated hardware components provided

by the hypervisor.

The dependency analysis aspect of the TIMBUS project will therefore also need to

examine how hardware dependencies will affect the archival and exhumation process.

The broad areas that need to be considered for an emulation based digital

preservation solution include:

 The intersection of hardware compatibility lists (HCLs) for all current and legacy

operating systems in our environment with the offered set of emulated

hardware available in current generation hypervisors. If these do not intersect

or overlap, we have a gap in our ability to exhume an archived environment.

 Specific applications may have specific hardware requirements. Ultimately

these can all be categorised as performance enhancers. Examples of these may

include:

 any application that takes advantage of an x86 extension (eg: MMX, AES-

NI, VTx, etc) to improve performance

 high end graphics generation or display may require extra video

processing capabilities to be supported by hardware

 some applications can require specific bandwidth is available to its

network or disk operations for optimal operation.

 Media and transport-layer dependencies.

 Components outside the classic client/server HW set such as smart phones,

tablets and sensors. These not only consume data, but can generate and

manipulate it as well.

Hardware dependencies are a complicated aspect of an enterprise but however are

not the particular focus of this Deliverable. With the re-emergence of virtualisation and

the usefulness of emulation already being discussed in the digital preservation

community it will be one of the points to focus on the subsequent Deliverable, D4.3,

TIMBUS D4.2 Dissemination Level: Restricted Page 93

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

once some effort has been carried out into the Deliverable that focuses on how

virtualisation will be handled from an architectural perspective in D5.3 (Architecture

and infrastructure definition for virtualisation, storage, rerun and integration (VSRI)).

Configuration Management

Configuration management controls all aspects of a system or product in relation to its

requirements, design and actual performance throughout its lifecycle. Thus, the term

“configuration” is used here as the combination of all parts of a system rather than

only the parameters of a software, including software and hardware (however, not

necessarily making their dependencies explicit).

The most relevant form of CM appears to be software CM (SCM), where some widely

disseminated definitions are illustrative: that from the Institute of Electrical and

Electronics Engineers (IEEE) and the Software Engineering Institute (SEI) at Carnegie

Mellon University (CMU).

The IEEE standard standard 729-1983 [updated as IEEE Std 610.12-1990] is illustrative

of the scope covered by CM:

 Identification: “identifying the structure of the product, its components and their

type, and making them unique and accessible in some form”

 Control: “controlling the release of product and changes to it throughout the

lifecycle …”

 Status Accounting: “recording and reporting the status of components and

change requests, and gathering vital statistics about components in the product

"

 Audit and review: “validating the completeness of a product and maintaining

consistency among the components …”

This is complemented by a definition as part of CMU’s Capability Maturity Model (CMM)

- "…Software Configuration Management involves identifying the configuration of the

software (selected software work products and their descriptions [= identification]) at

given points in time, systematically controlling changes to the configuration [=

control], and maintaining the integrity and traceability of the configuration throughout

the software lifecycle. The work products placed under software configuration

management include the software products that are delivered to the customer (for

example the software requirements document and the code) and the items that are

identified with or required to create these software products (for example the

compiler)…", [CMU, 1995].

Furthermore, the definition within the widely used Rational Unified Process (RUP)

includes: "The task of defining and maintaining configurations and versions of

TIMBUS D4.2 Dissemination Level: Restricted Page 94

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

artifacts. This includes baselining, version control, status control, and storage control

of the artifacts.", [Dumbill, E., 2012]. For additional definitions, cf. [Norin J, 2007],

[Bamford, R., et al., 1995], [Babich, W., 1986], as well as the definition of the

International Organisation for Standardisation (ISO).

From a management perspective, the principles and practices of CM represent an

accepted and understood foundation for implementing ISO-compliant processes in

software engineering organisations.

Because CM complements the views on software and hardware dependencies

described above not only by contributing the missing parametrisation of IT systems

but by viewing them more holistically, in the optimal case the practices, tools and

methodologies used in CM may yield a valuable basis to develop DP systems.

Context

A definition of context that has been accepted widely in the area of context-aware

applications has been given by Dey and Abowd: “Context is any information that can

be used to characterise the situation of an entity. An entity is a person, place, or

object that is considered relevant to the interaction between a user and an

application, including the user and applications themselves.” A problem with this

definition is that it does not differentiate between context and information about

context. A more recent definition by Bardram better reflects the fact that context

exists outside a representation system: “ ‘Context’ refers to the physical and social

situation in which computational devices are embedded.”

A context model can then be conceived of as a model suitable for storing information

about the context of a certain interaction event. Mobile context-aware computing has

to cover issues of sensor reliability, ad-hoc network communication, software

development support, reasoning and inference, usability, and privacy management.

Most recently, ontology-based approaches have gained importance to answer the

demands of these heterogeneous application environments with regards to

interoperability of context models. The key idea of ontology-based context modelling

is that applications using the context model also have to agree on a common

ontology, that is, a set of basic concepts defined in a formal language, which

developers can use to specify application specific concepts. Application concepts,

being founded upon the same basic concepts, can then be used for communication

between different applications.

When human beings reason or communicate about entities in the environment, they

usually abstract from certain aspects, and reason or communicate within a certain

TIMBUS D4.2 Dissemination Level: Restricted Page 95

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

context. Therefore, their reasoning and communication depends on the context the

entities are in. Without the dependant context, their reasoning or communication, in

worst case, may look absolutely unreasonable or “out-of-context”, so to speak. When

we reason about space, for instance, we may use to the West of as a transitive

relation. This assumption is valid as long as we suppose a sufficiently small local area

of context, as to the West of is globally a cyclic relation: Denmark is to the West of

Korea, Korea is to the West of Canada, and Canada is to the West of Denmark; within

the local context of a city or country, in contrast, to the West of can be used in the

same manner as to the North of, i.e. as if it was a transitive, acyclic relation.

Context Dependencies

As a starting point, we assume a general concept of context (which is composed of

context parameters) as the situation that an entity (in focus) resides in. In accordance,

context information refers to any information describing the situation (meaning,

information that describe the context and the context parameters it is composed of) of

an entity in focus. A (somehow) observed fact that an entity depends upon its context

is called context dependence. Furthermore, context parameters (or context aspects)

can depend on each other. For example, the time zone in which an event is performed

depends on the event’s geographic location. Another example is the technologic

platform (hardware and software) a business process depends on to be successfully

executed.

Domain Specific Languages

The following section is adapted from [Voelter, M., 2009].

A domain specific language (DSL) is a language that has been defined for a specific

domain. In other words, the concepts used by those languages are specific of the

domain they are covering. A domain specific language can be used by developers and

architects, but also by business users, and can be used as input for code generation,

validation, simulation or interpretation. When building a DSL, either a technical or a

business one, the knowledge of the domain already exists, tacitly or implicitly, only

needing to be captured and formalised. It should have a limited expressiveness.

As oppose to General Purpose Languages (GPLs), DSLs have to deal with a reduced

number of concerns [Fritzsche, 2010]. Examples of GPLs are General Purpose

Programming Languages like Java and C and the General Purpose Modeling Language

UML. On the other side, concrete examples of DSLs are the modeling language

Modelica [Mattsson, S., et al., 1997], as well as the Business Process Modeling

Notation (BPMN).

A DSL consists of abstract syntax, concrete syntax, and semantics. The abstract

syntax is the result of the formalisation of the concepts of the domain being analyzed,

TIMBUS D4.2 Dissemination Level: Restricted Page 96

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

resulting in a metamodel. The concrete syntax should be adequate to the domain of

its users, so that its use and adoption is free of trouble. It can be either textual or

graphical, depending on the domain being analysed. For instance, graphical notation is

adequate for demonstrating relationships between entities, data flows, etc. (e.g., UML

can be considered concrete syntax). The language semantics takes into account the

knowledge from the domain. Semantics provide meaning to the language, and are

often described in prose and usage examples and embedded on the platform which

will compile/interpret the language.

Also important in the definition of a DSL is the concept of viewpoint. If the purpose of a

language is to describe a whole system, then it should make use of viewpoints

describing different concerns of a system, providing notations and abstractions for

each. Viewpoints should also be related with each other so that the description is

coherent.

The benefits of using DSLs have been quantitatively evaluated in [Kieburtz, R. et al.,

1996], in which a higher degree of efficiency, e.g. in terms of productivity, was

revealed. It turned out, DSLs are beneficial if a family of programs, such as the family

of business processes, are addressed, which might occur again in the future. Also, it is

claimed that with the help of DSLs the constructs are usually more high level and are

therefore typically significantly shorter than their pendant construct in GPLs [Jouault,

F., et al., 2006]. For example, assuming a process model is built using a business

process DSL, the individual activities could be automatically generated as service,

given that some further information is provided. As a result, developers using a DSL

can concentrate on creative tasks rather than repetitive tasks. Another benefit of

using DSLs is pointed out in [Fritzsche, 2010] and displayed in Figure 18. In order to

involve a domain expert who is not necessarily a good skilled programmer, it is

proposed to split up the responsibilities of development into three different roles:

Figure 18: Expert roles using Domain Specific Languages

TIMBUS D4.2 Dissemination Level: Restricted Page 97

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

 The DSL Engineer defines the DSL, e.g. BPMN, and needs to provide tools to

create instances of this DSL, e.g. BPMN Modeling Tools.

 The Domain Expert uses the provided tools to define and manage his instances

of the DSL. Examples of domain experts are business process analysts or

business impact analysts.

 The Software Expert is the one who actually implements the development

artifacts. In case of an activity element in a business process model, he would

be the one developing the service using a GPL, such as Java. Preferably, this

implementation process is automated in the best possible way.

With the proposed sharing of responsibilities, domain specific models can be used as a

mean of communication between domain expert and software expert. Now, the

domain expert is able to focus on his respective concerns which is, to conclude, one

way to deal with the complexity of modern systems, e.g. process environments.

Information Collection

Information as defined by [ISO/IEC 2382-1:1993]:0.1.0.1.01: Knowledge concerning

objects, such as facts, events, things, processes, or ideas, including concepts, that

within a certain context has a particular meaning.

Data as defined by [ISO/IEC 2382-1:1993]:01.01.02: A reinterpretable representation

of information in a formalises manner suitable for communication, interpretation, or

processing.

Data collection as defined by [ISO/IEC 2382-6:1987]:05.02.08: The process of bringing

data together from one or more points for use in a computer.

Data entry as defined by [ISO/IEC 2382-6:1987]:05.02.09: The process of putting data

onto a machine-readable medium.

Data acquisition as defined by [ISO/IEC 2382-6:1987]:05.02.10: The process of

collecting and entering data.

Data collection has migrated from the 1960s view through, Data Access 1980s,

through Data Warehousing and Decision Support 1990s up to Data Mining 2000s,

source [Coxon A., 1999] [Weimer, J. (ed.), 1995] [Weller, S., et al., 1988] [Sapsford R.,

et al., 2006].

Information collection requires a few stages that should be defined as well.

TIMBUS D4.2 Dissemination Level: Restricted Page 98

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Information collection can use data gathered through data acquisition for sampling

information from sensors to the physical world. It can also use information from data

extraction systems that process a set of input sources in a non or semi-structured

system. This requires the identification of the sources for collection. This may require

a preliminary information collection for pre-processing. Scoping includes identification

of data-sources and identification of how data elements are structured. ETL is the

process of extracting the original data sources, transforming them as required and

then loading them into a representative format that is useful for the rest of the

system. Transforming is defined as changing the form of data according to specified

rules, without fundamentally changing the meaning of the data ([ISO/IEC 2382-

6:1987]:06.03.04). To load is defined as transfer [of] data into storage device or

working registers ([ISO/IEC 2382-6:1987]:06.03.03) and transfer is defined as to send

data from one storage location to another ([ISO/IEC 2382-6:1987]:06.03.01).

A methodology that is often used is that of “Extraction, Transform and Load” (ETL) of

information. Information collection will be carried out throughout the dependencies

and context extraction and mapping that will be performed in TIMBUS. Decisions of

the level of abstraction to use and the level of dependencies all relate to the original

components that are identified as discussed in the methodology in Section 2.4.

Another definition used for the acquisition of information from media sources is that of

“Automatic Identification and Data Capture” (AIDC). AIDC is used for obtaining

external data normally through analysis of images, sounds or video.

A boundary of digital preservation and therefore of the TIMBUS process itself is in how

to manage the scope of information and how to deal with unstructured data. For the

purposes of defining unstructured data we will use the definition that unstructured

data is “Data that cannot be easily represented as a model or if a model exists the set

of data that belongs to the class of model is small”. Easily and small are two terms

that weaken this definition but as can be found in certain articles there are

approaches to apply structure to seemingly unstructured data, [Buneman, P., et al.,

1997].

An email header for example can be seen as structured data as can the payload of the

data contained within the email. However the text in the email as it is normally written

by a human will normally be unstructured. The Internet is often also cited as an

unstructured data-source but several layers of structuring can be applied that would

make a more concrete definition difficult to maintain and use.

Information stored in the data of the system to be preserved is the basis for many of

the methods and techniques that will be used throughout TIMBUS. The importance of

collecting data for the manipulation of information for use in preservation can be

TIMBUS D4.2 Dissemination Level: Restricted Page 99

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

summarised in a quotation from Sir Arthur Conan Doyle as Sherlock Holmes, “It is a

capital mistake to theorise before one has data”.

TIMBUS D4.2 Dissemination Level: Restricted Page 100

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Annex A.2 - Dependencies in Service Operation and Lifecycle Processes

In order to be able to model and capture dependencies there are several IT industry

standards and frameworks regarding or making use of configuration management.

Configuration Management [ANSI/EIA-649-2004] is a standard function in different

contexts such as ISO 20000 [ISO/IEC 20000-1, 2011] (IT service management, ITIL),

IEEE 828 (software configuration management plans), ISO 10007 as a supplement to

ISO 9001 (Guidelines for configuration management). Further ISO/IEC/IEEE 12207 and

15288 (Software Lifecycle Management) and software engineering best practises

typically produce a number of artefacts on dependencies that are also valuable for

TIMBUS purposes. These standards may not apply to all the company needs and so

they might require tailoring according to the company’s needs.

For TIMBUS, configuration management data can be a valuable resource of

dependencies between various types of artefacts. It is therefore useful to take into

account the configuration information typically available in organisations complying

for following the above mentioned standards and leverage the information for digital

preservation purposes. Further sources of information are produced during the

software lifecycle.

Details of the respective standards are described briefly in the following sections.

Configuration Management in ITIL and ISO 9001

The Information Technology Infrastructure Library (ITIL) is a vendor independent, set

of best-practices for IT service management, owned by the United Kingdom’s Office of

Government Commerce (OGC) [OGC-ITIL, 2007]. It describes a set of processes to

manage the IT services and the underlying IT infrastructure in an efficient and

effective way with the aim of fulfilling service level agreements made with internal or

external customers. Configuration management is a key function for ITIL and

information necessary for operating services are stored and managed in a

Configuration Management Database (CMDB). The CMDB has the aim of tracking all

components of the IT infrastructure, including software, hardware, and documentation,

configurations, and the relations existing between these items [CMDB, 2010]. The

CMDB plays a major role for further processes in IT service management such as

Change Management, Disaster Recovery etc.

Configuration Management in ISO 9001

ISO 10007:2003 [ISO: 10007:2003] is part of the ISO 9001 [ISO: 9001:2008], designed

to support a quality management system which provides guidelines on the use of

configuration management by defining the configuration management process. This

TIMBUS D4.2 Dissemination Level: Restricted Page 101

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

includes configuration management planning, configuration identification,

configuration status accounting, and configuration audit. Configuration management

includes baseline identification and version control, status reporting, and change

control as well as detailed roles and responsibilities.

Software Configuration Management Plans (IEEE 828-2005)

The IEEE 828-2005 [IEEE: 828-2005] provides the most widely used guidelines for

creating a software configuration management plan. The activities defined in the

standard include configuration identification, configuration status accounting,

configuration control, configuration audits and reviews, subcontractor and vendor

control, as well as release management and delivery. Further requirements include

the necessity of having processes for creating baselines and change control for all

configuration items.

Software Lifecycle Management

The ISO/IEC 12207 [ISO/IEC 12207, 2008] details the software engineering processes

used in the lifecycle of a software system. ISO/IEC/IEEE 15288 [ISO/IEC 15288, 2008]

details all the processes used in the lifecycle of a human-made system. These

standards provide a framework for the development phase of software products, and

contain a “treatment” for any fragment of the development lifecycle. Also, they can be

extended by using any of the quality assurance, code reviews, and configuration

management planning and testing ISO/IEEE standards. Both standards are an typical

starting point for the other specific standards detailed above.

There are further frameworks offering guidance on establishing CM-related practices,

including COBIT, CMM/CMMI (Capability Maturity Model Integration), and the Software

Engineering Body of Knowledge (SWEBOK). In SWEBOK, software configuration

management is defined as the discipline of identifying the configuration of software at

distinct points in time. SWEBOK is publicly available [IEEE-SWEBOK, 2004] and is

synched with all the IEEE standards, periodically.

TIMBUS D4.2 Dissemination Level: Restricted Page 102

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Annex A.3 – Dependency relations as mapped by IBM Rational Software Architect

IBM Rational Software Architect (IBM RSA) is a comprehensive modelling and

development environment that uses UML for designing architecture for C++, J2EE

applications and web-services. It is built on top of Eclipse Software Framework and

includes capabilities focused on architectural code analysis, C++ and Model Driven

Development55. The version discussed here is 7.5, which supports UML 2.1 and model

based development. Of interest are the dependency modelling and modelling

capabilities. It is based on a fairly simple core model which is depicted in Figure 19.

Figure 19: Basic topology UML model of IBM RSA56

55http://ibm-rational-software-architect.software.informer.com/wiki/

TIMBUS D4.2 Dissemination Level: Restricted Page 103

Copyright TIMBUS Consortium 2011 - 2013

http://ibm-rational-software-architect.software.informer.com/wiki/

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

It can be used to model an IT system or parts of an IT system. Despite the core

model’s simplicity, it is designed in a way that new types, with respect to a domain of

the topology that is to be modelled, can be easily injected. Such extensions exist for a

couple of domains, e.g. server, storage, OS, database, and J2EE.

Elements of the core model are:

 Topology is the top-level container of the topology.

 Unit represents the unit of deployment, i.e. it is your basic model entity (more

specific units are defined in the model extensions, e.g. File System, Operating

System).

 Capability is to describe an ability that is offered of a unit.

 Requirement is to describe a need that is required by a unit. It will be checked

against offered capabilities of the connected units.

 Artefact describes a deployable resource or an object.

 Relationship Links are the connections between the unit. There are a couple of

different links, three of them in the basic topology model shown in Figure 19. As

they are of relevance for the dependency relations they are discussed in slightly

more detail in the next subsection.

Dependency relations taken into consideration

Relations in the topology model are defined through Links. Links are specified at an

abstract level then more fully specified. Relationship links are important for the

dependency model as most of them resemble one particular kind of dependency in the

dependency model. Three types are defined at high level: Dependency, Hosting and

Member Link. Each of these links hold the source and the target of the link that is

participating in that relationship.

A Dependency Link is used to link a requirement with a link of dependency to a

capability, which indicates that the requirement is fulfilled by the target capability. It

also provides a means to enforce compliance of the source requirement against the

target capability.

A Hosting Link indicates that a unit will be hosted based on the fulfilment of all hosting

requirements with hosting capabilities on the target host unit.

56Makin, N. Anatomy of a topology model in Rational Software Architect Version 7.5: Part 1:

Deployment modelling.

http://www.ibm.com/developerworks/rational/library/08/1202_makin/index.html

http://en.wikipedia.org/wiki/System_Architect_(software)

TIMBUS D4.2 Dissemination Level: Restricted Page 104

Copyright TIMBUS Consortium 2011 - 2013

http://en.wikipedia.org/wiki/System_Architect_(software)
http://en.wikipedia.org/wiki/System_Architect_(software)
http://en.wikipedia.org/wiki/System_Architect_(software)
http://en.wikipedia.org/wiki/System_Architect_(software)
http://en.wikipedia.org/wiki/System_Architect_(software)
http://en.wikipedia.org/wiki/System_Architect_(software)
http://en.wikipedia.org/wiki/System_Architect_(software)
http://en.wikipedia.org/wiki/System_Architect_(software)
http://en.wikipedia.org/wiki/System_Architect_(software)
http://en.wikipedia.org/wiki/System_Architect_(software)
http://en.wikipedia.org/wiki/System_Architect_(software)
http://en.wikipedia.org/wiki/System_Architect_(software)
http://en.wikipedia.org/wiki/System_Architect_(software)
http://en.wikipedia.org/wiki/System_Architect_(software)
http://en.wikipedia.org/wiki/System_Architect_(software)
http://en.wikipedia.org/wiki/System_Architect_(software)
http://www.ibm.com/developerworks/rational/library/08/1202_makin/index.html

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

A Member Link represents the containment relationship that defines the linkage

between two units, where the target of the link is the member and the source is the

container.

There are more complicated relationship links of which some are briefly described in

the following list:

 A Realisation Link is used to link a conceptual unit with another unit to indicate

that the target unit will replace ("realise") the conceptual unit. As this is

basically the class-instance-relationship from the object-oriented world this link

does not translate into a dependency. Conceptual units simply do not exist in a

implemented software systems.

 A Constraint Link is used to constrain the source and the target unit based on

the semantics of the child constraint placed on it. As opposed to the realisation

link a constraint link is of value for a dependency analysis. It can be mapped to

similar concepts in the configuration management.

Including the extensions available, which are defining more specific units and

relationship links, the components and inter-relationships of a software system can be

modelled quite thoroughly.

Implementation example

Figure 20: Example SAP system modelled as topology model

TIMBUS D4.2 Dissemination Level: Restricted Page 105

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

In the example topology model, shown in Figure 20, two SAP systems are modelled.

For confidentiality reasons it is not further specified what particular SAP systems they

represent. Naturally, big business applications consist of many interacting

components, services, etc. These (sub-)units and the respective links are displayed in

a tree view for clarity reasons but can also be displayed in the more common graph

view. However, still visible as graph in the topology example are the links between

SAP systems and the eight servers that are necessary to operate both systems.

Limitations

Even though modelling infrastructures of software systems and their interrelationship

can be performed the IBM RSA has some limitations with regards to dependency

analysis:

 RSA is intended to be used for development and modelling and only basic

reasoning possibilities are supported.

 A second disadvantage is the extremely technical aspects that have to be

modelled to have a comprehensive representation of the system.

TIMBUS D4.2 Dissemination Level: Restricted Page 106

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

Annex A.4 - Example Listing of CUDF for the TIMBUS Music Process in Taverna

preamble:

package: taverna-workbench

version: 2.3.0

architecture: all

depends: sun-java6-jre , graphviz , weka , somlib

conflicts: openjdk-6-jre

section: universe/science

package: graphviz

version: 2.26.3-5ubuntu4

architecture: amd64

maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>

depends: libc6 (>= 2.11), libcdt4, libcgraph5, libexpat1 (>= 1.95.8), libgd2-noxpm

(>= 2.0.36~rc1~dfsg) | libgd2-xpm (>= 2.0.36~rc1~dfsg), libgraph4, libgvc5,

libgvpr1, libx11-6, libxaw7, libxmu6, libxt6

recommends: ttf-liberation

suggests: gsfonts, graphviz-doc

conflicts: gdtclft

section: graphics

package: sun-java6-jre

version: 6.26-1ubuntu1

architecture: all

maintainer: Debian Java Maintainers <pkg-java-maintainers@lists.alioth.debian.org>

depends: debconf (>= 0.5) | debconf-2.0 , java-common (>= 0.24), locales, sun-java6-

bin (>= 6.26-1ubuntu1) | ia32-sun-java6-bin (>= 6.26-1ubuntu1)

TIMBUS D4.2 Dissemination Level: Restricted Page 107

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Software Service Dependency Analysis and Reasoning Methods

recommends: gsfonts-x11

suggests: sun-java6-plugin | ia32-sun-java6-plugin, sun-java6-fonts, ttf-baekmuk | ttf-

unfonts | ttf-unfonts-core, ttf-kochi-gothic | ttf-sazanami-gothic, ttf-kochi-mincho | ttf-

sazanami-mincho, ttf-arphic-uming

conflicts: j2se-common

replaces: ia32-sun-java6-bin, sun-java6-bin

section: partner/java

package: weka

version: 3.6.6

architecture: all

maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>

depends: openjdk-6-jre | sun-java6-jre, java-wrappers, cup (>= 0.11a+20060608)

Section: universe/science

package: somtoolbox

version: 0.7.5

architecture: all

maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>

depends: openjdk-6-jre | sun-java6-jre, java-wrappers, cup (>= 0.11a+20060608)

Section: universe/science

request:

install: taverna-workbench = 2.3.0

TIMBUS D4.2 Dissemination Level: Restricted Page 108

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

Annex A.5 – TIMBUS inverse relations mapping

Table 7: TIMBUS inverse constraint relation mappings

Name of relationship Inverse relation

Requires Asymmetric relationship

Conflicts Symmetric relationship, Conflicts.

Pre-depends Asymmetric relationship

Same-depends Symmetric relationship, Same-depends

Post-depends Asymmetric relationship

Table 8: TIMBUS non-exhaustive inverse description relation mappings

Name of relationship Inverse relation

isA isParentTo

isAssociationOf hasAssociation

isDeliveryOf hasDelivery

isExecutionOf hasExecution

isFormatOf hasFormat

isGuidanceOf hasGuidance

IsLicenceOf hasLicence

isPartOf hasPart

TIMBUS D4.2 Dissemination Level: Restricted Page 109

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

Name of relationship Inverse relation

isBelongingOf hasBelonging

isConfigurationOf hasConfiguration

IsNameOf hasName

isTypeOf hasType

isVendorOf hasVendor

isVersionOf hasVersion

IsSpecificationOf hasSpecification

isSupporterOf hasSupporter

Recommends/suggests Provides

TIMBUS D4.2 Dissemination Level: Restricted Page 110

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

Annex A.6 – Listing of OWL-RDF properties of constraint relations

 <Declaration>

 <ObjectProperty IRI="#hasProvider"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#hasRequirement"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#isConflictOf"/>

 </Declaration>

 <Declaration>

 <ObjectProperty IRI="#isRecommendationOf"/>

 </Declaration>

 <InverseObjectProperties>

 <ObjectProperty IRI="#isProviderOf"/>

 <ObjectProperty IRI="#hasProvider"/>

 </InverseObjectProperties>

 <InverseObjectProperties>

 <ObjectProperty IRI="#hasRequirement"/>

 <ObjectProperty IRI="#isRequirementOf"/>

 </InverseObjectProperties>

 <SymmetricObjectProperty>

 <ObjectProperty IRI="#hasConflict"/>

 </SymmetricObjectProperty>

 <SymmetricObjectProperty>

TIMBUS D4.2 Dissemination Level: Restricted Page 111

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

 <ObjectProperty IRI="#isConflictOf"/>

 </SymmetricObjectProperty>

 <AsymmetricObjectProperty>

 <ObjectProperty IRI="#hasProvider"/>

 </AsymmetricObjectProperty>

TIMBUS D4.2 Dissemination Level: Restricted Page 112

Copyright TIMBUS Consortium 2011 - 2013

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

7 References

1. Beagrie N., et al., 2001: Beagrie, N. and Jones, M. (2001) Preservation and

Management of Digital Materials: A Handbook, The British Library, London.

http://www.dpconline.org/advice/preservationhandbook

2. DPE 2007: DigitalPreservationEurope Partners, 2007: DPE Digital Preservation

Research Roadmap. Public Deliverable D7.2, DPE.

3. Stevens, W.P, et al., 1974: Stevens, W.P.; Myers, G.J.; and Constantine, L.L.

"Structured Design," IBM Systems Journal, 13:115-139, 1974.

4. IEEE 1471:2000: ISO/IEC/IEEE 42010 replaces IEEE 1471:2000. Recommended

Practice for Architecture Description of Software-Intensive Systems. IEEE

Computer Society Std. http://www.iso-architecture.org/ieee-1471

5. Sousa P., et al., 2006: Sousa, P., Caetano, A., Vasconcelos, A., Pereira, C. &

Tribolet, J. (2006): Enterprise architecture modeling with the unified modeling

language. In Enterprise Modeling and Computing with UML. IRM Press.

6. Aguilar-Savén R., 2004: R. Aguilar-Saven. Business process modelling: Review

and framework. International Journal of Production Economics In Production

Planning and Control, Vol. 90, No. 2. (28 July 2004), pp. 129-149,

doi:10.1016/S0925-5273(03)00102-6

7. Safoora, K., et al., 2008: Safoora S. Khan and Greenwood, Phil and Garcia,

Alessandro and Rashid, Awais. 2008. On the Impact of Evolving Requirements-

Architecture Dependencies: An Exploratory Study. In Advanced Information

Systems Engineering (LNCS). Springer Berlin / Heidelberg. ISBN: 978-3-540-

69533-2. Pages: 243-257. Url: http://dx.doi.org/10.1007/978-3-540-69534-9_19

8. Norin J, 2007: Norin, Jens. 2007. LEAN Configuration Management

Evolving the CM Discipline Through the Agile Paradigm Shift. Fall 2007 issue of

Methods & Tools. http://www.methodsandtools.com/archive/archive.php?id=62

9. Bamford, R., et al., 1995: Robert Bamford, William J. Deibler II Software Systems

Quality Consulting) -SSQC 1995 Configuration Management and ISO 9001

(http://www.ssqc.com/do25v6new.pdf)

10. CMU, 1995: Carnegie Mellon Univ. Software Engineering Inst. The Capability

Maturity Model: Guidelines for Improving the Software Process, Addison Wesley,

1995.

11. Babich, W., 1986: Wayne A. Babich. (February 1986) Software Configuration

Management: Coordination for Team Productivity.

TIMBUS D4.2 Dissemination Level: Restricted Page 113

Copyright TIMBUS Consortium 2011 - 2013

http://www.dpconline.org/advice/preservationhandbook
http://www.iso-architecture.org/ieee-1471
http://dx.doi.org/10.1007/978-3-540-69534-9_19
http://www.methodsandtools.com/archive/archive.php?id=62
http://www.ssqc.com/do25v6new.pdf

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

12. Voelter, M., 2009: Best Practices for DSLs and Model-Driven Development.

Journal of Object Technology, 8 (6), pp. 79-102.

13. Fritzsche, 2010: Performance related Decision Support for Process Modelling.

PhD Thesis. School of Electronics, Electrical Engineering and Computer Science,

Queens University Belfast.

14. Mattsson, S., et al., 1997: Mattsson, S. & Elmqvist, H (1997): Modelica - an

international effort to design the next generation modeling language. In

Proceedings of the 7th IFAC Symp. on Computer Aided Control Systems Design

(CACSD'97)

15. ISO/IEC 2382-1:1993: ISO/IEC 2382-1:1993: ISO Information technology –

Vocabulary, 1993.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?

csnumber=7229

16. ISO/IEC 2382-6:1987: ISO/IEC 2382-6:1987. Information processing systems --

Vocabulary -- Part 6: Preparation and handling of data.

www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?

csnumber=7238

17. Kieburtz, R. et al., 1996: Kieburtz, R., McKinney, L., Bell, J., Hook, J., Kotov, A.,

Lewis, J., Oliva, D., Sheard, T., Smith, I. & Walton, L. (1996): A software

engineering experiment in software component generation. In Proceedings of

the 18th International Conference on Software Engineering (ICSE'96), pp. 542-

552. IEEE Computer Society.

18. Jouault, F., et al., 2006: Jouault, F., Bezivin, J. & Kurtev, I. (2006): TCS: a DSL for

the Specication of Textual Concrete Syntaxes in Model Engineering. In

Proceedings of the 5th international conference on Generative programming

and component engineering (GPCE'06), pp. 249-254. ACM.

19. Weller, S., et al., 1988: Weller, S., Romney, A. (1988). Systematic Data

Collection (Qualitative Research Methods Series 10). Thousand Oaks, California:

- Social Sciences information gathering

20. Weimer, J. (ed.), 1995: Research Techniques in Human Engineering. Englewood

Cliffs, NJ

21. Buneman, P., et al., 1997: Peter Buneman, Susan Davidson, Mary Fernandez,

and Dan Suciu. Adding Structure to Unstructured Data. In Proceedings of the

International Conference on Database Theory, 1997.

22. Coxon A., 1999: Sorting Data: collection and analysis By Anthony Peter

Macmillan Coxon -1999

TIMBUS D4.2 Dissemination Level: Restricted Page 114

Copyright TIMBUS Consortium 2011 - 2013

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=7229
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=7229
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=7238
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=7238

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

23. Sapsford R., et al., 2006: Data Collection and Analysis By Dr. Roger Sapsford,

Victor Jupp – 2006

24. TOGAF 2011: The Open Group (2011) TOGAF version 9.1. Van Haren Publishing

25. Archimate 2005: Lankhorst, M (2005) Enterprise Architecture at Work:

Modelling, Communication, and Analysis. Springer, 2005.

26. Zachman, J., 1987: “A framework for information systems architecture,” IBM

Systems Journal, vol. 12, no. 6, pp. 276–292.

27. OMG-BPMN, 2011: Object Management Group, Business Process Model and

Notation (BPMN), Version 2.0, OMG Standard, formal/2011-01-03, 2011.

28. OAIS, 2002: CCSDS, Reference Model for an Open Archival Information System

(OAIS) - Blue Book, 2002.

29. ISO14721:2003: ISO, Open archival information system – Reference model

(ISO14721:2003), 2003.

30. Giaretta, D., 2007: The CASPAR Approach to Digital Preservation. The

Internation Journal of Digital Curation, 2(1).

31. Conway, E., et al., 2011: Conway, E., Mattheus, B., Giaretta, D., Lambert, S.,

Draper, N. and Wilson, M. Managing Risks in the Preservation of Research Data

with Preservation Networks, In the 7th International Digital Curation Conference,

2011.

32. OCLC, 2005: OCLC and RLG, Data Dictionary for Preservation Metadata, Final

Report of the PREMIS Working Group. OCLC and RLG, 2005.

33. Szyperski, C. 2002: Szyperski, Clemens 2002 Component Software: Beyond

Object-Orientated Programming (2nd Edition). Addison-Wesley Professional, 2

edition, November 2002.

34. Mancinelli F, 2006: Mancinelli, F.; Boender, J.; Di Cosmo, R.; Vouillon, J.; Durak,

B.; Leroy, X.; Treinen, R., Managing the complexity of large free and open

source package-based software distributions, Automated Software Engineering,

2006. ASE'06. 21st IEEE/ACM International Conference, pp 199-208,2006,IEEE.

35. Treinen, R., et al., 2008: Ralf Treinen, Stefano Zacchiroli. Description of the

CUDF Format. CoRR Journal. Vol, abs/0811.3621. EE,

http://arxiv.org/abs/0811.3621

36. OASIS, 2007: OASIS, Web Services Business Process Execution Language

Version 2.0, OASIS Standard, 2007.

37. WSDL, 2007: World Wide Web Consortium, Web Services Description Language

(WSDL) Version 2.0 Part I: Core Language, W3C Recommendation, 2007.

TIMBUS D4.2 Dissemination Level: Restricted Page 115

Copyright TIMBUS Consortium 2011 - 2013

http://arxiv.org/abs/0811.3621

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

38. UML, 2007: Object Management Group, OMG Unified Model Language (OMG

UML) Superstructure, Version 2.4.1, 2011.

39. SoaML, 2009: Object Management Group, Service oriented architecture

Modeling Language (SoaML) – Specification for the UML Profile and Metamodel

for Services (UPMS), OMG Adopted Specification, Finalisation Task Force Beta 2

document (FTF Beta 2), 2009.

40. Le, L. S., et al., 2010: Le, L. S., Ghose, A. K., Morrison, E., Definition of a

Description Language for Business Service Decomposition, in Proceedings of the

1st International Conference on Exploring Services Sciences, Geneva, 2010.

41. ISO/IEC 20000-1, 2011: ISO/IEC 20000-1 - Service Management System

standard, 2011

42. OGC-ITIL, 2007: Office of Government Commerce, The Official Introduction to

the ITIL Service Lifecycle, The Stationery Office, 2007.

43. CMDB, 2010: Distributed Management Task Force, CMDB Federation (CMDBf)

Frequently Asked Questions (FAQ) White Paper, Version 1.0.0, DMTF

Informational, DSP2024, 2010.

44. IEEE: 828-2005: IEEE, IEEE Std 828-2005 – IEEE Standard for Software

Configuration Management Plans, IEEE Computer Society, 2005.

45. ISO: 10007:2003: ISO, ISO 10007:2003 – Quality Management Systems –

Guidelines for Configuration Management, 2003.

46. ISO: 9001:2008: ISO 9001:2008 - Quality management systems –

Requirements, 2008

47. ANSI/EIA-649-2004: Electronic Industries Alliance (EIA), ANSI/EIA-649-2004 –

National Consensus Standard For Configuration Management, 2004.

48. ISO/IEC 12207, 2008: ISO/IEC, ISO/IEC 12207 - Systems and software

engineering - Software life cycle processes, International Organisation for

Standardisation and International Electrotechnical Commission Std., 2008.

49. ISO/IEC 15288, 2008: ISO/IEC, ISO/IEC 15288 - Systems and software

engineering - System life cycle processes, International Organisation for

Standardisation and International Electrotechnical Commission Std., 2008.

50. IEEE-SWEBOK, 2004: IEEE Computer Society, Guide to the software engineering

body of knowledge (swebok), IEEE, 2004 [Online]. Available:

http://www.computer.org/portal/web/swebok

TIMBUS D4.2 Dissemination Level: Restricted Page 116

Copyright TIMBUS Consortium 2011 - 2013

http://www.computer.org/portal/web/swebok

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

51. Sadiq, S., et al., 2007: Sadiq, S., Governatori, G., Naimiri, K. Modeling Control

Objectives for Business Process Compliance. In Proceedings of the 5th

International Conference on Business Process Management (BPM 2007), 2007.

52. Ghose, A., et al., 2007: Ghose, A., Koliadis, G. Auditing Business Process

Compliance. In Proceedings of the 5th International Conference in Service

Oriented Computing (ICSOC 2007), 2007.

53. Van der Aalst, et al., 2003: Van der Aalst, W. M. P., ter Hofstede, A.H.M., Weske,

M. Business Process Management: A Survey. In Proceedings of the 1st

International Conference on Business Process Management (BPM 2003), 2003.

54. Van der Aalst, et al., 2007: Van der Aalst, W. M. P. Challenges in Business

Process Analysis. In Proceedings of the 9th International Conference on

Enterprise Information Systems (ICEIS), 2007.

55. Van der Aalst, W. M. P., et al., 2007: Van der Aalst, W. M. P., Reijers, H. A., van

Dongen, B. F., Alves de Medeiros, A. K., Song, M., Verbeek, H. M. W. Business

Process Mining: An Industrial Application. In Information Systems 32, 713-732,

2007.

56. Uschold M., et al., 1996: Uschold M., King M., Moralee S., Zorgios Y. (1996), The

Enterprise Ontology. AIAI, The University of Edinburgh. United Kingdom.

57. Fox M., et al., 1997: Fox M., Barbuceanu M., Gruninger M., Lin J. (1997) An

Organisation Ontology for Enterprise Modeling. University of Toronto. Canada.

58. Krcmar, H., 2005: Informationsmanagement 4th ed. Heidelberg: Springer.

59. Leimeister, S. et al., 2010: The Business Perspective of Cloud Computing:

Actors, Roles and Value Networks. In ECIS 2010 Proceedings. ECIS 2010

Proceedings. Available at: http://aisel.aisnet.org/ecis2010/56.

60. Knijff et al., 2011: Van der Knijff, J. and Wilson, C. (2011) Evaluation of

Characterisation Tools - Part 1: Identification, Scape Project, FP7 ICT-2009.4.1-

270137.

61. Rimal, B.P., et al., 2009: Rimal, B.P., Choi, E. & Lumb, I., 2009. A Taxonomy and

Survey of Cloud Computing Systems. In 2009 Fifth International Joint

Conference on INC, IMS and IDC. 2009 Fifth International Joint Conference on

INC, IMS and IDC. IEEE, pp. 44–51.

62. Dumbill, E., 2012: What is big data?. http://radar.oreilly.com/2012/01/what-is-

big-data.html?cmp=ba-conf-st12-twitter-promo, last visited: 2012-02-20

63. Steffen S., et al., 2009: Steffen Staab and Rudi Studer. 2009. Handbook on

Ontologies (2nd ed.). Springer Publishing Company, Incorporated.

TIMBUS D4.2 Dissemination Level: Restricted Page 117

Copyright TIMBUS Consortium 2011 - 2013

http://radar.oreilly.com/2012/01/what-is-big-data.html?cmp=ba-conf-st12-twitter-promo
http://radar.oreilly.com/2012/01/what-is-big-data.html?cmp=ba-conf-st12-twitter-promo

TIMBUS WP 4 – Processes and Methods for Digitally Preserving Business Processes

Deliverable Deliverable 4.2: Dependency Models Iteration 1

64. Gruber T. 1992: Tom R. Gruber. A translation approach to portable ontologies.

Knowledge Acquisition, 5(2):199-220, 1993.

65. Uschold M., et al., 2006: Mike Uschold and Michael Gruninger, 2006.

Ontologies: Principles, methods and applications. In Journal Knowledge

Engineering Review, Vol. 11, pp93—136.

TIMBUS D4.2 Dissemination Level: Restricted Page 118

Copyright TIMBUS Consortium 2011 - 2013

	1 Executive Summary
	2 Introduction
	2.1 Dependencies
	2.2 Problem Statement
	2.3 Goals
	2.4 Approach
	2.5 Relationship with rest of TIMBUS project
	2.6 Document Structure

	3 Related Work: Standards and Methodologies in Use
	3.1 Modelling Organisations, Assets, and Processes
	3.1.1 The Open Group Architecture Framework
	3.1.2 Zachman

	3.2 Modelling Business Processes
	3.2.1 ArchiMate
	3.2.2 BPMN

	3.3 Modelling Software Services Dependencies
	3.3.1 High Level Software Service Dependencies
	3.3.2 Low Level Software Service Dependencies

	3.4 Modelling and Capturing Hardware Dependencies
	3.4.1 Capturing based on Non-proprietary Standards
	3.4.2 Capturing based on Hardware
	3.4.3 Capturing based on Operating System
	3.4.4 Capturing based on Scanning Tool

	3.5 Extraction of Information
	3.5.1 Data and Information
	3.5.2 Data persistence variants and challenges
	Flat files
	Databases
	Cloud storage
	Big Data

	3.5.3 Extraction of Business Process Information
	3.5.4 Runtime Information extracted from IT systems

	3.6 Information modelling
	3.6.1 Enterprise Ontology
	3.6.2 TOVE Project
	3.6.3 Resource Description Framework
	3.6.4 Web Ontology Language RDF/OWL

	3.7 Digital Preservation
	3.7.1 OAIS Information Model
	3.7.2 PREMIS
	3.7.3 CASPAR Preservation Networks

	4 Formal Language Specification
	4.1 Base ontology and construction
	4.2 Naming conventions
	4.3 Formal language for modelling of dependencies
	4.4 Types of dependency relationships
	4.5 TIMBUS constraint relationships
	4.6 TIMBUS descriptive relationships
	4.7 Formal semantics for constraint relations
	4.8 Versioning and location of the Formalism

	5 Application of Formalism to a use-case
	6 Conclusion and Outlook
	6.1 Future work and D4.3 roadmap
	Configuration Management in ISO 9001
	Software Configuration Management Plans (IEEE 828-2005)

	7 References

